The property of maximal transcendentality: Calculation of Feynman integrals
Teoretičeskaâ i matematičeskaâ fizika, Tome 190 (2017) no. 3, pp. 455-467 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider examples of two-loop two- and three-point Feynman integrals for which the calculation results have the property of maximal transcendentality.
Keywords: uniqueness method, graph, optical conductivity, counterterm.
Mots-clés : multiloop calculation
@article{TMF_2017_190_3_a6,
     author = {A. V. Kotikov},
     title = {The~property of maximal transcendentality: {Calculation} of {Feynman} integrals},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {455--467},
     year = {2017},
     volume = {190},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_190_3_a6/}
}
TY  - JOUR
AU  - A. V. Kotikov
TI  - The property of maximal transcendentality: Calculation of Feynman integrals
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 455
EP  - 467
VL  - 190
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_190_3_a6/
LA  - ru
ID  - TMF_2017_190_3_a6
ER  - 
%0 Journal Article
%A A. V. Kotikov
%T The property of maximal transcendentality: Calculation of Feynman integrals
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 455-467
%V 190
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2017_190_3_a6/
%G ru
%F TMF_2017_190_3_a6
A. V. Kotikov. The property of maximal transcendentality: Calculation of Feynman integrals. Teoretičeskaâ i matematičeskaâ fizika, Tome 190 (2017) no. 3, pp. 455-467. http://geodesic.mathdoc.fr/item/TMF_2017_190_3_a6/

[1] A. V. Kotikov, L. N. Lipatov, “DGLAP and BFKL equations in the $\mathcal N=4$ supersymmetric gauge theory”, Nucl. Phys. B, 661:1–2 (2003), 19–61 ; Erratum, 685:1–3 (2004), 405–407, arXiv: hep-ph/0112346 | DOI | MR | Zbl | DOI

[2] L. N. Lipatov, “Redzhezatsiya vektornogo mezona i vakuumnaya osobennost v neabelevykh kalibrovochnykh teoriyakh”, YaF, 23:3 (1976), 642–656; V. S. Fadin, E. A. Kuraev, L. N. Lipatov, “On the Pomeranchuk singularity in asymptotically free theories”, Phys. Lett. B, 60:1 (1975), 50–52 ; E. A. Кураев, Л. Н. Липатов, B. C. Фадин, “Мультиреджевские процессы в теории Янга–Миллса”, ЖЭТФ, 71:3 (1976), 840–855; “Сингулярность Померанчука в неабелевых калибровочных теориях”, 72:2 (1977), 377–389 ; 45 (1977), 199 ; Я. Я. Балицкий, Л. Н. Липатов, “О померанчуковской особенности в квантовой хромодинамике”, ЯФ, 28:2 (1978), 1597–1611; “Вычисление сечения мезон-мезонного взаимодействия в квантовой хромодинамике”, Письма в ЖЭТФ, 30:6 (1979), 383–386 | DOI | MR

[3] V. S. Fadin, L. N. Lipatov, “BFKL pomeron in the next-to-leading approximation”, Phys. Lett. B, 429:1–2 (1998), 127–134 | DOI

[4] L. Brink, J. H. Schwarz, J. Scherk, “Supersymmetric Yang–Mills theories”, Nucl. Phys. B, 121:1 (1977), 77–92 | DOI | MR

[5] A. V. Kotikov, L. N. Lipatov, V. N. Velizhanin, “Anomalous dimensions of Wilson operators in $N=4$ SYM theory”, Phys. Lett. B, 557:1–2 (2003), 114–120 | DOI | MR | Zbl

[6] A. V. Kotikov, L. N. Lipatov, A. I. Onishchenko, V. N. Velizhanin, “Three-loop universal anomalous dimension of the Wilson operators in $N=4$ SUSY Yang–Mills model”, Phys. Lett. B, 595:1–4 (2004), 521–529 | DOI | MR | Zbl

[7] L. Bianchi, V. Forini, A. V. Kotikov, “On DIS Wilson coefficients in $\mathcal N=4$ super Yang–Mills theory”, Phys. Lett. B, 725:4–5 (2013), 394–401 | DOI | MR

[8] S. Moch, J. A. M. Vermaseren, A. Vogt, “The three-loop splitting functions in QCD: the non-singlet case”, Nucl. Phys. B, 688:1–2 (2004), 101–134 ; J. A. M. Vermaseren, A. Vogt, S. Moch, “The third-order QCD corrections to deep-inelastic scattering by photon exchange”, Nucl. Phys. B, 724:1–2 (2005), 3–182 | DOI | MR | Zbl | DOI | MR | Zbl

[9] D. J. Broadhurst, “The master two loop diagram with masses”, Z. Phys. C, 47:1 (1990), 115–124 | DOI | MR

[10] J. Fleischer, A. V. Kotikov, O. L. Veretin, “Analytic two-loop results for self-energy- and vertex-type diagrams with one non-zero mass”, Nucl. Phys. B, 547:1–2 (1999), 343–374 ; “Applications of the large mass expansion”, Acta Phys. Polon. B, 29:10 (1998), 2611–2625 | DOI | MR

[11] B. Eden, P. Heslop, G. P. Korchemsky, E. Sokatchev, “Hidden symmetry of four-point correlation functions and amplitudes in $\mathcal N=4$ SYM”, Nucl. Phys. B, 862:1 (2012), 193–231 ; L. J. Dixon, “Scattering amplitudes: the most perfect microscopic structures in the universe”, J. Phys. A, 44:45 (2011), 454001 ; L. J. Dixon, J. M. Drummond, J. M. Henn, “Analytic result for the two-loop six-point NMHV amplitude in $\mathcal N=4$ super Yang–Mills theory”, JHEP, 01 (2012), 024, 49 pp. ; T. Gehrmann, J. M. Henn, T. Huber, “The three-loop form factor in $\mathcal N=4$ super Yang–Mills”, JHEP, 03 (2012), 101, 35 pp. ; A. Brandhuber, G. Travaglini, G. Yang, “Analytic two-loop form factors in $\mathcal N=4$ SYM”, JHEP, 05 (2012), 082, 32 pp. ; J. M. Henn, S. Moch, S. G. Naculich, “Form factors and scattering amplitudes in $\mathcal N=4$ SYM in dimensional and massive regularizations”, JHEP, 12 (2011), 024, 29 pp. | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | DOI | MR | DOI | MR | DOI | MR | Zbl

[12] O. Schlotterer, S. Stieberger, “Motivic multiple zeta values and superstring amplitudes”, J. Phys. A, 46:47 (2013), 475401, 37 pp. ; J. Broedel, O. Schlotterer, S. Stieberger, “Polylogarithms, multiple zeta values and superstring amplitudes”, Fortsch. Phys., 61:9 (2013), 812–870 ; S. Stieberger, T. R. Taylor, “Maximally helicity violating disk amplitudes, twistors and transcendental integrals”, Phys. Lett. B, 716:1 (2012), 236–239 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR

[13] B. Eden, Three-loop universal structure constants in $\mathcal N=4$ SYSY Yang–Mills theory, arXiv: ; R. G. Ambrosio, B. Eden, T. Goddard, P. Heslop, C. Taylor, “Local integrands for the five-point amplitude in planar $\mathcal N=4$ SYM up to five loops”, JHEP, 01 (2015), 116, 34 pp. ; D. Chicherin, R. Doobary, B. Eden, P. Heslop, G. P. Korchemsky, E. Sokatchev, “Bootstrapping correlation functions in $\mathcal N=4$ SYM”, JHEP, 03 (2016), 031, 24 pp., arXiv: ; B. Eden, A. Sfondrini, “Three-point functions in ${\cal N} =4$ SYM: the hexagon proposal at three loops”, JHEP, 02 (2016), 165, 18 pp., arXiv: 1207.31121506.049831510.01242 | DOI | DOI | DOI | MR

[14] A. V. Kotikov, “The property of maximal transcendentality in the $\mathcal N=4$ supersymmetric Yang–Mills”, Subtleties in Quantum Field Theory: Lev Lipatov Festschrift, ed. D. Diakonov, Petersburg Nuclear Physics Institute, Gatchina, 2010, 150–174, arXiv: ; “The property of maximal transcendentality: calculation of anomalous dimensions in the $\mathcal N=4$ SYM and master integrals”, ЭЧАЯ, 44:2 (2013), 719–743 1005.5029 | DOI

[15] D. I. Kazakov, A. V. Kotikov, “Metod unikalnostei: mnogopetlevye vychisleniya v kvantovoi khromodinamike”, TMF, 73:3 (1987), 348–361 ; D. I. Kazakov, A. B. Kotikov, “Total $\alpha_s$ correction to the deep-inelastic scattering cross-sections ratio $R=\sigma_L/\sigma_T$ in QCD”, Nucl. Phys. B, 307:4 (1988), 721–762 ; Erratum, 345:1 (1990), 299–300 | DOI | DOI | MR

[16] A. V. Kotikov, “Metod vychisleniya momentov strukturnykh funktsii glubokoneuprugogo rasseyaniya v kvantovoi khromodinamike”, TMF, 78:2 (1989), 187–199 | MR

[17] A. V. Kotikov, “The Gegenbauer polynomial technique: the evaluation of a class of Feynman diagrams”, Phys. Lett. B, 375:1–4 (1996), 240–248 | DOI | MR | Zbl

[18] D. I. Kazakov, Analytical methods for multiloop calculations: two lectures on the method of uniqueness, Preprint JINR E2-84-410, JINR, Dubna, 1984 | MR

[19] K. G. Chetyrkin, F. V. Tkachov, “Integration by parts: The algorithm to calculate $\beta$-functions in 4 loops”, Nucl. Phys. B, 192:1 (1981), 159–204 | DOI

[20] D. I. Kazakov, A. V. Kotikov, “On the value of the $\alpha_s$-correction to the Callan–Gross relation”, Phys. Lett. B, 291:1–2 (1992), 171–176 | DOI

[21] A. V. Kotikov, “New method of massive Feynman diagrams calculation”, Modern Phys. Lett. A, 6:8 (1991), 677–692 ; “New method of massive Feynman diagrams calculation. Vertex type functions”, Internat. J. Modern Phys. A, 7:9 (1992), 1977–1991 | DOI | MR | DOI | MR | Zbl

[22] J. M. Henn, J. C. Plefka, Scattering Amplitudes in Gauge Theories, Lecture Notes in Physics, 883, Springer, Berlin, 2014 | DOI | MR | Zbl

[23] A. V. Kotikov, “Differential equations method. New technique for massive Feynman diagrams calculation”, Phys. Lett. B, 254:1–2 (1991), 158–164 ; “Differential equations method: the calculation of vertex type Feynman diagrams”, Phys. Lett. B, 259:3 (1991), 314–322 ; “Differential equation method: the calculation of N point Feynman diagrams”, Phys. Lett. B, 267:1 (1991), 123–127 ; “New method of massive N point Feynman diagrams calculation”, Modern Phys. Lett. A, 6:34 (1991), 3133–3141 ; E. Remiddi, “Differential equations for Feynman graph amplitudes”, Nuovo Cimento A, 110:12 (1997), 1435–1452 | DOI | MR | DOI | MR | DOI | MR | DOI | MR | Zbl | MR

[24] B. A. Kniehl, A. V. Kotikov, A. I. Onishchenko, O. L. Veretin, “Two-loop sunset diagrams with three massive lines”, Nucl. Phys. B, 738:1–2 (2006), 306–316 ; B. A. Kniehl, A. V. Kotikov, “Calculating four-loop tadpoles with one non-zero mass”, Phys. Lett. B, 638:5–6 (2006), 531–537 ; “Counting master integrals: integration-by-parts procedure with effective mass”, Phys. Lett. B, 712:3 (2012), 233–234 | DOI | MR | Zbl | DOI | DOI | MR

[25] J. Fleischer, M. Yu. Kalmykov, A. V. Kotikov, “Two-loop self-energy master integrals on shell”, Phys. Lett. B, 462:1–2 (1999), 169–177 | DOI

[26] J. Fleischer, A. V. Kotikov, O. L. Veretin, “The differential equation method: calculation of vertex-type diagrams with one non-zero mass”, Phys. Lett. B, 417:1–2 (1998), 163–172 ; A. Kotikov, J. H. Kühn, O. Veretin, “Two-loop formfactors in theories with mass gap and $Z$-boson production”, Nucl. Phys. B, 788:1–2 (2008), 47–62 | DOI | MR | DOI

[27] A. V. Kotikov, “Svoistvo maksimalnoi transtsendentnosti: vychislenie master-integralov”, TMF, 176:1 (2013), 98–108, arXiv: 1212.3732 | DOI | MR | Zbl

[28] B. A. Kniehl, A. V. Kotikov, Z. V. Merebashvili, O. L. Veretin, “Strong-coupling constant with flavor thresholds at five loops in the modified minimal-subtraction scheme”, Phys. Rev. Lett., 97:4 (2006), 042001, 4 pp. ; “Heavy-quark pair production in polarized photon-photon collisions atnext-to-leading order: Fully integrated total cross sections”, Phys. Rev. D, 79:11 (2009), 114032, 9 pp. ; B. A. Kniehl, A. V. Kotikov, O. L. Veretin, “Orthopositronium lifetime: analytic results in $\mathcal O(\alpha)$ and $\mathcal O(\alpha^3\ln(\alpha))$”, Phys. Rev. Lett., 101:19 (2008), 193401, 4 pp. ; “Orthopositronium lifetime at $O(\alpha)$ and $O(\alpha^3\ln(\alpha))$ in closed form”, Phys. Rev. A, 80:5 (2009), 052501, 11 pp. | DOI | DOI | DOI | DOI

[29] T. Gehrmann, J. M. Henn, T. Huber, “The three-loop form factor in $\mathcal N=4$ super Yang– Mills”, JHEP, 03 (2012), 101, 35 pp. | DOI | MR

[30] J. M. Henn, “Multiloop integrals in dimensional regularization made simple”, Phys. Rev. Lett., 110:25 (2013), 251601, 4 pp. | DOI

[31] J. M. Henn, “Lectures on differential equations for Feynman integrals”, J. Phys. A, 48:15 (2015), 153001, 35 pp. | DOI | MR | Zbl

[32] C. Duhr, Mathematical aspects of scattering amplitudes, arXiv: 1411.7538 | MR

[33] A. Devoto, D. W. Duke, “Table of integrals and formulae for Feynman diagram calculations”, Riv. Nuovo Cimento, 7:6 (1984), 1–39 | DOI | MR

[34] E. Remiddi, J. A. M. Vermaseren, “Harmonic polylogarithms”, Internat. J. Modern Phys. A, 15:5 (2000), 725–754 | DOI | MR | Zbl

[35] A. I. Davydychev, M. Yu. Kalmykov, “Massive Feynman diagrams and inverse binomial sums”, Nucl. Phys. B, 699:1–2 (2004), 3–64 | DOI | MR | Zbl

[36] V. N. Gribov, L. N. Lipatov, “Gluboko neuprugoe ep-rasseyanie v teorii vozmuschenii”, YaF, 15:4 (1972), 781–807; Л. Н. Липатов, “Партонная модель и теория возмущений”, ЯФ, 20:1, 181–198; G. Altarelli, G. Parisi, “Asymptotic freedom in parton language”, Nucl. Phys. B, 126:2 (1977), 298–318 ; Ю. Л. Докшицер, “Вычисление структурных функций для глубоко неупругого рассеяния и e${+}$e${-}$ аннигиляция в теории возмущений квантовой хромодинамики.”, ЖЭТФ, 73:4, 1216–1240 | DOI

[37] A. V. Kotikov, L. N. Lipatov, “NLO corrections to the BFKL equation in QCD and in supersymmetric gauge theories”, Nucl. Phys. B, 582:1–3 (2000), 19–43 | DOI

[38] L. N. Lipatov, “Next-to-leading corrections to the BFKL equation and the effective action for high energy processes in QCD”, Nucl. Phys. Proc. Suppl. A, 99:1–2 (2001), 175–179 | DOI

[39] A. V. Kotikov, “Glubokoneuprugoe rasseyanie: $Q^2$-zavisimost strukturnykh funktsii”, EChAYa, 38:1 (2007), 5–82; A. V. Kotikov, V. N. Velizhanin, Analytic continuation of the Mellin moments of deep inelastic structure functions, arXiv: hep-ph/0501274

[40] A. V. Kotikov, L. N. Lipatov, A. Rej, M. Staudacher, V. N. Velizhanin, “Dressing and wrapping”, J. Stat. Mech., 2007:10 (2007), P10003, 75 pp. ; Z. Bajnok, R. A. Janik, T. Lukowski, “Four loop twist two, BFKL, wrapping and strings”, Nucl. Phys. B, 816:3 (2009), 376–398 | DOI | DOI | MR | Zbl

[41] A. V. Kotikov, A. Rej, S. Zieme, “Analytic three-loop solutions for image $\mathcal N=4$ SYM twist operators”, Nucl. Phys. B, 813:3 (2009), 460–483 ; M. Beccaria, A. V. Belitsky, A. V. Kotikov, S. Zieme, “Analytic solution of the multiloop Baxter equation”, Nucl. Phys. B, 827:3 (2010), 565–606 | DOI | MR | Zbl | DOI | MR | Zbl

[42] T. Lukowski, A. Rej, V. N. Velizhanin, “Five-loop anomalous dimension of twist-two operators”, Nucl. Phys. B, 831:1–2 (2010), 105–132 | DOI | MR | Zbl

[43] C. Marboe, V. Velizhanin, D. Volin, “Six-loop anomalous dimension of twist-two operators in planar $\mathcal N=4 $ SYM theory”, JHEP, 07 (2015), 084, 30 pp. | DOI | MR

[44] M. Staudacher, JHEP, 05 (2005), 054, 35 pp. | DOI | MR

[45] M. Beccaria, “Three loop anomalous dimensions of twist-3 gauge operators in $\mathcal N=4$ SYM”, JHEP, 09 (2007), 023, 21 pp. ; M. Beccaria, V. Forini, T. Lukowski, S. Zieme, “Twist-three at five loops, Bethe ansatz and wrapping”, JHEP, 03 (2009), 129, 22 pp. ; V. N. Velizhanin, “Six-Loop anomalous dimension of twist-three operators in $\mathcal N=4$ SYM”, JHEP, 11 (2010), 129, 20 pp. | DOI | MR | DOI | DOI | MR | Zbl

[46] W. Siegel, “Supersymmetric dimensional regularization via dimensional reduction”, Phys. Lett. B, 84:2 (1979), 193–196 | DOI | MR

[47] J. M. Maldacena, “The Large-$N$ limit of superconformal field theories and supergravity”, Internat. J. Theor. Phys., 38:4 (1999), 1113–1133 ; Adv. Theor. Math. Phys., 2:2 (1998), 231–252 ; S. S. Gubser, I. R. Klebanov, A. M. Polyakov, “Gauge theory correlators from non-critical string theory”, Phys. Lett. B, 428:1–2 (1998), 105–114 ; E. Witten, “Anti de Sitter space and holography”, Adv. Theor. Math. Phys., 2:2 (1998), 253–291 | DOI | MR | Zbl | MR | DOI | MR | Zbl | DOI | MR | Zbl

[48] A. V. Kotikov, L. N. Lipatov, “On the highest transcendentality in $\mathcal N=4$ SUSY”, Nucl. Phys. B, 769:3 (2007), 217–255 | DOI | MR | Zbl

[49] B. Basso, G. P. Korchemsky, J. Kotanski, “Cusp anomalous dimension in maximally supersymmetric Yang–Mills theory at strong coupling”, Phys. Rev. Lett., 100:9 (2008), 091601, 4 pp. ; “Embedding nonlinear $O(6)$ sigma model into $\mathcal N=4$ super-Yang–Mills theory”, Nucl. Phys. B, 807:3 (2009), 397–423 | DOI | MR | Zbl | DOI | MR | Zbl

[50] N. Beisert, B. Eden, M. Staudacher, “Transcendentality and crossing”, J. Stat. Mech., 2007:01 (2007), P01021, 31 pp., arXiv: hep-th/0610251 | DOI | MR

[51] R. C. Brower, J. Polchinski, M. J. Strassler, C. I. Tan, “The Pomeron and gauge/string duality”, JHEP, 12 (2007), 005, 62 pp. | DOI | MR | Zbl

[52] M. S. Costa, V. Goncalves, J. Penedones, “Conformal Regge theory”, JHEP, 12 (2012), 091, 49 pp. ; A. V. Kotikov, L. N. Lipatov, “Pomeron in the $\mathcal N=4$ supersymmetric gauge model at strong couplings”, Nucl. Phys. B, 874:3 (2013), 889–904 ; N. Gromov, F. Levkovich-Maslyuk, G. Sizov, S. Valatka, “Quantum spectral curve at work: from small spin to strong coupling in $\mathcal{N} $=4 SYM”, JHEP, 07 (2014), 156, 31 pp. | DOI | MR | DOI | MR | Zbl | DOI