Model of quark–antiquark interaction in quantum chromodynamics on the light front
Teoretičeskaâ i matematičeskaâ fizika, Tome 190 (2017) no. 3, pp. 440-454 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We formulate a model of quark–antiquark interaction related to the limit transition to the light-front Hamiltonian in quantum chromodynamics. As ultraviolet regularization, we use a lattice in the space of transverse coordinates, and we additionally introduce a longitudinal light-front coordinate cutoff and also corresponding periodic boundary conditions. We regard the zero mode with respect to this coordinate as an independent dynamical variable. The state space of the model is limited to a quark and an antiquark that interact only via the zero mode of the gluon field on the light front. In this framework, we obtain a discrete mass spectrum of bound states. This spectrum is determined by an equation that with respect to the longitudinal coordinate turns out to be analogous to the 't Hooft equation in two-dimensional quantum chromodynamics. The equation also contains a quark–antiquark potential that ensures confinement in the transverse space.
Keywords: Hamiltonian approach, quantum chromodynamics, mass spectrum, light front, 't Hooft equation, quark–antiquark model.
@article{TMF_2017_190_3_a5,
     author = {R. A. Zubov and E. V. Prokhvatilov and M. Yu. Malyshev},
     title = {Model of quark{\textendash}antiquark interaction in quantum chromodynamics on the~light front},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {440--454},
     year = {2017},
     volume = {190},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_190_3_a5/}
}
TY  - JOUR
AU  - R. A. Zubov
AU  - E. V. Prokhvatilov
AU  - M. Yu. Malyshev
TI  - Model of quark–antiquark interaction in quantum chromodynamics on the light front
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 440
EP  - 454
VL  - 190
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_190_3_a5/
LA  - ru
ID  - TMF_2017_190_3_a5
ER  - 
%0 Journal Article
%A R. A. Zubov
%A E. V. Prokhvatilov
%A M. Yu. Malyshev
%T Model of quark–antiquark interaction in quantum chromodynamics on the light front
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 440-454
%V 190
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2017_190_3_a5/
%G ru
%F TMF_2017_190_3_a5
R. A. Zubov; E. V. Prokhvatilov; M. Yu. Malyshev. Model of quark–antiquark interaction in quantum chromodynamics on the light front. Teoretičeskaâ i matematičeskaâ fizika, Tome 190 (2017) no. 3, pp. 440-454. http://geodesic.mathdoc.fr/item/TMF_2017_190_3_a5/

[1] R. A. Zubov, E. V. Prokhvatilov, M. Yu. Malyshev, “Predelnyi perekhod k svetovomu frontu v kvantovoi khromodinamike i kvark-antikvarkovoe priblizhenie”, TMF, 184:3 (2015), 456–464 | DOI | DOI | MR | Zbl

[2] P. A. M. Dirac, “Forms of relativistic dynamics”, Rev. Modern Phys., 21:3 (1949), 392–398 | DOI | MR

[3] M. Burkardt, A. Langnau, “Hamiltonian formulation of $(2+1)$-dimensional QED on the light cone”, Phys. Rev. D, 44:4 (1991), 1187–1197 | DOI | MR

[4] M. Burkardt, A. Langnau, “Rotational invariance in light-cone quantization”, Phys. Rev. D, 44:12 (1991), 3857–3867 | DOI | MR

[5] S. A. Paston, V. A. Franke, “Sravnenie kvantovo-polevoi teorii vozmuschenii na svetovom fronte i v lorentsevykh koordinatakh”, TMF, 112:3 (1997), 399–416, arXiv: hep-th/9901110 | DOI | DOI

[6] V. A. Franke, Yu. V. Novozhilov, S. A. Paston, E. V. Prokhvatilov, “Quantization of field theory on the light front”, Focus on Quantum Field Theory, ed. O. Kovras, Nova Sci. Publ., New York, 2005, 23–81, arXiv: hep-th/0404031

[7] S. A. Paston, E. V. Prokhvatilov, V. A. Franke, “K postroeniyu gamiltoniana KKhD v koordinatakh svetovogo fronta”, TMF, 120:3 (1999), 417–437, arXiv: hep-th/0002062 | DOI | DOI | Zbl

[8] E. V. Prokhvatilov, V. A. Franke, “Predelnyi perekhod k svetopodobnym koordinatam v teorii polya i KKhD-gamiltonian”, YaF, 49:4 (1989), 1109–1117

[9] V. A. Franke, Yu. V. Novozhilov, E. V. Prokhvatilov, “On the light-cone formulation of classical non-abelian gauge theory”, Lett. Math. Phys., 5:3 (1981), 239–245 | DOI | MR

[10] V. A. Franke, Yu. V. Novozhilov, E. V. Prokhvatilov, “On the light-cone quantization of non-abelian gauge theory”, Lett. Math. Phys., 5:5 (1981), 437–444 | DOI | MR

[11] E. V. Prokhvatilov, H. W. L. Naus, H.-J. Pirner, “Effective light-front quantization of scalar field theories and two-dimensional electrodynamics”, Phys. Rev. D, 51:6 (1995), 2933–2942 | DOI

[12] E.-M. Ilgenfrits, S. A. Paston, G. Yu. Pirner, E. V. Prokhvatilov, V. A. Franke, “Kvantovye polya na svetovom fronte, formulirovka v koordinatakh, blizkikh k svetovomu frontu, reshetochnoe priblizhenie”, TMF, 148:1 (2006), 89–101, arXiv: hep-th/0610020 | DOI | DOI | MR

[13] E. V. Prokhvatilov, V. A. Franke, “Priblizhennoe opisanie KKhD kondensatov v svetopodobnykh koordinatakh”, YaF, 47:3 (1988), 882–883

[14] M. Yu. Malyshev, E. V. Prokhvatilov, “Kvantovaya khromodinamika na svetovom fronte s nulevymi modami, modeliruyuschimi vakuum”, TMF, 169:2 (2011), 272–284 | DOI | DOI | MR | Zbl

[15] G. 't Hooft, “A two-dimensional model for mesons”, Nucl. Phys. B, 75:3 (1974), 461–470 | DOI

[16] D. V. Bugg, “Four sorts of meson”, Phys. Rep., 397:5 (2004), 257–358 | DOI

[17] S. S. Afonin, “Experimental indication on chiral symmetry restoration in meson spectrum”, Phys. Lett. B, 639:3–4 (2006), 258–262, arXiv: hep-ph/0603166 | DOI

[18] S. S. Afonin, “Light meson spectrum and classical symmetries of QCD”, Eur. Phys. J. A, 29:3 (2006), 327–335, arXiv: hep-ph/0606310 | DOI | MR

[19] M. Shifman, A. Vainshtein, “Highly excited mesons, linear Regge trajectories, and the pattern of the chiral symmetry realization”, Phys. Rev. D, 77:3 (2008), 034002, 15 pp., arXiv: 0710.0863 | DOI | MR

[20] S. J. Brodsky, T. Huang, G. P. Lepage, “Hadronic wave functions and high momentum transfer interactions in quantum chromodynamics”, Particles and Fields 2 (Summer institute, Banff, Canada, August 16–27, 1981), eds. A. Z. Capri, A. N. Kamal, Plenum Press, New York, 1983, 143–199 | DOI

[21] A. Vega, I. Schmidt, T. Branz, T. Gutsche, V. E. Lyubovitskij, “Meson wave function from holographic models”, Phys. Rev. D, 80:5 (2009), 055014, 8 pp., arXiv: 0906.1220 | DOI

[22] A. V. Radyushkin, “Nonforward parton densities and soft mechanism for form factors and wide-angle Compton scattering in QCD”, Phys. Rev. D, 58:11 (1998), 114008, 12 pp., arXiv: hep-ph/9803316 | DOI

[23] S. S. Afonin, “Towards understanding broad degeneracy in non-strange mesons”, Modern Phys. Lett. A, 22:19 (2007), 1359–1371, arXiv: hep-ph/0701089 | DOI

[24] S. S. Afonin, “Properties of possible new unflavored mesons below 2.4 GeV”, Phys. Rev. C, 76:1 (2007), 015202, 5 pp., arXiv: 0707.0824 | DOI

[25] S. S. Afonin, “Hydrogen like classification for light nonstrange mesons”, Internat. J. Modern Phys. A, 23:25 (2008), 4205–4217, arXiv: 0709.4444 | DOI

[26] P. Bicudo, “Large degeneracy of excited hadrons and quark models”, Phys. Rev. D, 76:9 (2007), 094005, 9 pp., arXiv: hep-ph/0703114 | DOI

[27] J. Alfaro, P. Labraña, A. A. Andrianov, “Extended QCD${}_2$ from dimensional projection of QCD${}_4$”, JHEP, 07 (2004), 067, 16 pp., arXiv: hep-th/0309110 | DOI

[28] S. J. Brodsky, G. F. de Téramond, “Hadronic spectra and light-front wave functions in holographic QCD”, Phys. Rev. Lett., 96:20 (2006), 201601, 4 pp., arXiv: hep-ph/0602252 | DOI

[29] S. S. Chabysheva, J. R. Hiller, “Dynamical model for longitudinal wave functions in light-front holographic QCD”, Ann. Phys., 337 (2013), 143–152, arXiv: 1207.7128 | DOI