Renormalization group description of the effect of structural defects on phase transitions in complex spin systems with random anisotropy effects and structural defects
Teoretičeskaâ i matematičeskaâ fizika, Tome 190 (2017) no. 3, pp. 419-425 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For the first time, we present a field theory description of the phase transition in an amorphous magnet with the effects of both random anisotropy and structural defects in the two-loop approximation with the fixed dimension $d=3$. For this multivertex model, we determine the system of fixed points of the renormalization group equations and calculate the stability exponents using the Padé–Borel summation method. We show the role of structural defects as stabilizing factors in second-order phase transitions.
Mots-clés : phase transition, amorphous magnet
Keywords: anisotropy, structural defect, renormalization group method, summation method.
@article{TMF_2017_190_3_a3,
     author = {V. V. Dubs and V. V. Prudnikov and P. V. Prudnikov},
     title = {Renormalization group description of the~effect of structural defects on phase transitions in complex spin systems with random anisotropy effects and structural defects},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {419--425},
     year = {2017},
     volume = {190},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_190_3_a3/}
}
TY  - JOUR
AU  - V. V. Dubs
AU  - V. V. Prudnikov
AU  - P. V. Prudnikov
TI  - Renormalization group description of the effect of structural defects on phase transitions in complex spin systems with random anisotropy effects and structural defects
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 419
EP  - 425
VL  - 190
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_190_3_a3/
LA  - ru
ID  - TMF_2017_190_3_a3
ER  - 
%0 Journal Article
%A V. V. Dubs
%A V. V. Prudnikov
%A P. V. Prudnikov
%T Renormalization group description of the effect of structural defects on phase transitions in complex spin systems with random anisotropy effects and structural defects
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 419-425
%V 190
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2017_190_3_a3/
%G ru
%F TMF_2017_190_3_a3
V. V. Dubs; V. V. Prudnikov; P. V. Prudnikov. Renormalization group description of the effect of structural defects on phase transitions in complex spin systems with random anisotropy effects and structural defects. Teoretičeskaâ i matematičeskaâ fizika, Tome 190 (2017) no. 3, pp. 419-425. http://geodesic.mathdoc.fr/item/TMF_2017_190_3_a3/

[1] K. Vilson, Dzh. Kogut, Renormalizatsionnaya gruppa i $\varepsilon$-razlozhenie, Mir, M., 1975

[2] D. J. Amit, Field Theory the Renormalization Group and Critical Phenomena, McGraw-Hill, New York, 1978 | MR

[3] V. V. Prudnikov, P. V. Prudnikov, A. N. Vakilov, Teoretiko-polevye i chislennye metody opisaniya kriticheskikh yavlenii v strukturno neuporyadochennykh sistemakh, Izd-vo Omsk. gos. un-ta, Omsk, 2012

[4] V. V. Prudnikov, P. V. Prudnikov, A. N. Vakilov, Teoreticheskie metody opisaniya neravnovesnogo kriticheskogo povedeniya strukturno neuporyadochennykh sistem, Fizmatlit, M., 2013

[5] I. F. Lyuksyutov, V. L. Pokrovskii, “Fazovye perekhody vtorogo roda v sistemakh s kubicheskoi anizotropiei”, Pisma v ZhETF, 21:1 (1975), 22–25

[6] D. Mukamel, S. Krinsky, “Physical realizations of $n \geq 4$-component vector models. I. Derivation of the Landau–Ginzburg–Wilson Hamiltonians”, Phys. Rev. B., 13:11 (1976), 5065–5077 | DOI

[7] D. Mukamel, S. Krinsky, “Physical realizations of $n \geq 4$-component vector models. II. $\varepsilon$-expansion analysis of the critical behavior”, Phys. Rev. B., 13:11 (1976), 5078–5085 | DOI

[8] A. K. Murtazaev, F. B. Babaev, G. Ya. Aznaurova, “Osobennosti fazovykh perekhodov v trekhmernykh razbavlennykh strukturakh, opisyvaemykh modelyu Pottsa”, ZhETF, 136:3 (2009), 516–520

[9] M. Dudka, R. Folk, Yu. Holovatch, “On the critical behaviour of random anisotropy magnets: cubic anisotropy”, Condens. Matter Phys., 4:3(27) (2001), 459–472 | DOI | MR

[10] D. Mukamel, G. Grinstein, “Critical behavior of random systems”, Phys. Rev. B., 25:1 (1982), 381–388 | DOI | MR

[11] G. Jug, “Critical behavior of disordered spin systems in two and three dimensions”, Phys. Rev. B., 27:1 (1983), 609–612 | DOI