Keywords: anisotropy, structural defect, renormalization group method, summation method.
@article{TMF_2017_190_3_a3,
author = {V. V. Dubs and V. V. Prudnikov and P. V. Prudnikov},
title = {Renormalization group description of the~effect of structural defects on phase transitions in complex spin systems with random anisotropy effects and structural defects},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {419--425},
year = {2017},
volume = {190},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2017_190_3_a3/}
}
TY - JOUR AU - V. V. Dubs AU - V. V. Prudnikov AU - P. V. Prudnikov TI - Renormalization group description of the effect of structural defects on phase transitions in complex spin systems with random anisotropy effects and structural defects JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2017 SP - 419 EP - 425 VL - 190 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2017_190_3_a3/ LA - ru ID - TMF_2017_190_3_a3 ER -
%0 Journal Article %A V. V. Dubs %A V. V. Prudnikov %A P. V. Prudnikov %T Renormalization group description of the effect of structural defects on phase transitions in complex spin systems with random anisotropy effects and structural defects %J Teoretičeskaâ i matematičeskaâ fizika %D 2017 %P 419-425 %V 190 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_2017_190_3_a3/ %G ru %F TMF_2017_190_3_a3
V. V. Dubs; V. V. Prudnikov; P. V. Prudnikov. Renormalization group description of the effect of structural defects on phase transitions in complex spin systems with random anisotropy effects and structural defects. Teoretičeskaâ i matematičeskaâ fizika, Tome 190 (2017) no. 3, pp. 419-425. http://geodesic.mathdoc.fr/item/TMF_2017_190_3_a3/
[1] K. Vilson, Dzh. Kogut, Renormalizatsionnaya gruppa i $\varepsilon$-razlozhenie, Mir, M., 1975
[2] D. J. Amit, Field Theory the Renormalization Group and Critical Phenomena, McGraw-Hill, New York, 1978 | MR
[3] V. V. Prudnikov, P. V. Prudnikov, A. N. Vakilov, Teoretiko-polevye i chislennye metody opisaniya kriticheskikh yavlenii v strukturno neuporyadochennykh sistemakh, Izd-vo Omsk. gos. un-ta, Omsk, 2012
[4] V. V. Prudnikov, P. V. Prudnikov, A. N. Vakilov, Teoreticheskie metody opisaniya neravnovesnogo kriticheskogo povedeniya strukturno neuporyadochennykh sistem, Fizmatlit, M., 2013
[5] I. F. Lyuksyutov, V. L. Pokrovskii, “Fazovye perekhody vtorogo roda v sistemakh s kubicheskoi anizotropiei”, Pisma v ZhETF, 21:1 (1975), 22–25
[6] D. Mukamel, S. Krinsky, “Physical realizations of $n \geq 4$-component vector models. I. Derivation of the Landau–Ginzburg–Wilson Hamiltonians”, Phys. Rev. B., 13:11 (1976), 5065–5077 | DOI
[7] D. Mukamel, S. Krinsky, “Physical realizations of $n \geq 4$-component vector models. II. $\varepsilon$-expansion analysis of the critical behavior”, Phys. Rev. B., 13:11 (1976), 5078–5085 | DOI
[8] A. K. Murtazaev, F. B. Babaev, G. Ya. Aznaurova, “Osobennosti fazovykh perekhodov v trekhmernykh razbavlennykh strukturakh, opisyvaemykh modelyu Pottsa”, ZhETF, 136:3 (2009), 516–520
[9] M. Dudka, R. Folk, Yu. Holovatch, “On the critical behaviour of random anisotropy magnets: cubic anisotropy”, Condens. Matter Phys., 4:3(27) (2001), 459–472 | DOI | MR
[10] D. Mukamel, G. Grinstein, “Critical behavior of random systems”, Phys. Rev. B., 25:1 (1982), 381–388 | DOI | MR
[11] G. Jug, “Critical behavior of disordered spin systems in two and three dimensions”, Phys. Rev. B., 27:1 (1983), 609–612 | DOI