The WKB method for the quantum mechanical two-Coulomb-center problem
Teoretičeskaâ i matematičeskaâ fizika, Tome 190 (2017) no. 3, pp. 403-418 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using a modified perturbation theory, we obtain asymptotic expressions for the two-center quasiradial and quasiangular wave functions for large internuclear distances $R$. We show that in each order of $1/R$, corrections to the wave functions are expressed in terms of a finite number of Coulomb functions with a modified charge. We derive simple analytic expressions for the first, second, and third corrections. We develop a consistent scheme for obtaining WKB expansions for solutions of the quasiangular equation in the quantum mechanical two-Coulomb-center problem. In the framework of this scheme, we construct semiclassical two-center wave functions for large distances between fixed positively charged particles (nuclei) for the entire space of motion of a negatively charged particle (electron). The method ensures simple uniform estimates for eigenfunctions at arbitrary large internuclear distances $R$, including $R\gg1$. In contrast to perturbation theory, the semiclassical approximation is not related to the smallness of the interaction and hence has a wider applicability domain, which permits investigating qualitative laws for the behavior and properties of quantum mechanical systems.
Keywords: semiclassical approximation, WKB method, two Coulomb centers, asymptotic solution.
@article{TMF_2017_190_3_a2,
     author = {M. Hnatich and V. M. Khmara and V. Yu. Lazur and O. K. Reity},
     title = {The~WKB method for the~quantum mechanical {two-Coulomb-center} problem},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {403--418},
     year = {2017},
     volume = {190},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_190_3_a2/}
}
TY  - JOUR
AU  - M. Hnatich
AU  - V. M. Khmara
AU  - V. Yu. Lazur
AU  - O. K. Reity
TI  - The WKB method for the quantum mechanical two-Coulomb-center problem
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 403
EP  - 418
VL  - 190
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_190_3_a2/
LA  - ru
ID  - TMF_2017_190_3_a2
ER  - 
%0 Journal Article
%A M. Hnatich
%A V. M. Khmara
%A V. Yu. Lazur
%A O. K. Reity
%T The WKB method for the quantum mechanical two-Coulomb-center problem
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 403-418
%V 190
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2017_190_3_a2/
%G ru
%F TMF_2017_190_3_a2
M. Hnatich; V. M. Khmara; V. Yu. Lazur; O. K. Reity. The WKB method for the quantum mechanical two-Coulomb-center problem. Teoretičeskaâ i matematičeskaâ fizika, Tome 190 (2017) no. 3, pp. 403-418. http://geodesic.mathdoc.fr/item/TMF_2017_190_3_a2/

[1] I. V. Komarov, L. I. Ponomarev, S. Yu. Slavyanov, Sferoidalnye i kulonovskie sferoidalnye funktsii, Nauka, M., 1976 | MR

[2] L. I. Menshikov, L. N. Somov, “Sovremennoe sostoyanie myuonnogo kataliza yadernykh reaktsii sinteza”, UFN, 160:8 (1990), 47–103 | DOI | DOI

[3] S. S. Gershtein, Yu. V. Petrov, L. I. Ponomarev, “Myuonnyi kataliz i yadernyi briding”, UFN, 160:8 (1990), 3–46 | DOI | DOI

[4] R. K. Janev, L. P. Presnyakov, V. P. Shevelko, Physics of Highly Charged Ions, Springer Series in Electrophysics, 13, Springer, Berlin, 1985

[5] E. A. Solovev, “Neadiabaticheskie perekhody v atomnykh stolknoveniyakh”, UFN, 157:3 (1989), 437–476 | DOI | DOI

[6] M. J. Jamieson, A. Dalgarno, M. Aymar, J. Tharamel, “A study of exchange interactions in alkali molecular ion dimers with application to charge transfer in cold Cs”, J. Phys. B, 42:9 (2009), 095203, 10 pp. | DOI

[7] M. Hnatič, V. M. Khmara, V. Yu. Lazur, O. K. Reity, “Quasiclassical study of the quantum mechanical two-coulomb-centre problem”, EPJ Web of Conf., 108 (2016), 02028 | DOI

[8] I. V. Komarov, E. A. Solovev, “Kvaziperesecheniya termov v zadache dvukh kulonovskikh tsentrov s silno otlichayuschimisya zaryadami”, TMF, 40:1 (1979), 130–136 | DOI | MR

[9] T. P. Grozdanov, R. K. Janev, V. Yu. Lazur, “Asymptotic theory of the strongly asymmetric two-Coulomb-center problem”, Phys. Rev. A, 32:6 (1985), 3425–3434 | DOI | MR

[10] M. I. Karbovanets, V. Yu. Lazur, M. I. Chibisov, “Nerezonansnyi obmen dvumya elektronami”, ZhETF, 86:1 (1984), 84–89

[11] V. Yu. Lazur, Yu. Yu. Mashika, R. K. Yanev, T. P. Grozdanov, “Kvaziperesecheniya ridbergovskikh termov v zadache dvukh kulonovskikh tsentrov s silno otlichayuschimisya zaryadami”, TMF, 87:1 (1991), 97–109 | DOI | MR

[12] P. P. Gorvat, V. Yu. Lazur, S. I. Migalina, I. M. Shuba, R. K. Yanev, “Rasscheplenie termov v kvantovo-mekhanicheskoi zadache dvukh tsentrov dlya uravneniya Diraka”, TMF, 109:2 (1996), 232–249 | DOI | DOI | Zbl

[13] O. K. Reity, V. Yu. Lazur, A. V. Katernoha, “The quantum mechanical two-Coulomb-centre problem in the Dirac equation framework”, J. Phys. B, 35:1 (2002), 1–17 | DOI

[14] D. I. Bondar, M. Gnatich, V. Yu. Lazur, “Dvumernaya zadacha dvukh kulonovskikh tsentrov pri malykh mezhtsentrovykh rasstoyaniyakh”, TMF, 148:2 (2006), 269–287 | DOI | DOI | MR | Zbl

[15] D. I. Bondar, M. Hnatich, V. Yu. Lazur, “The two Coulomb centres problem at small intercentre separations in the space of arbitrary dimension”, J. Phys. A: Math. Theor., 40:8 (2007), 1791–1807 | DOI | MR | Zbl

[16] D. I. Bondar, M. Gnatich, V. Yu. Lazur, “Simvolnye vychisleniya dlya zadachi dvukh kulonovskikh tsentrov v prostranstve proizvolnoi razmernosti (angl)”, Pisma v EChAYa, 5:3(145) (2008), 437–443 | DOI

[17] E. E. Nikitin, S. Ya. Umanskii, Neadiabaticheskie perekhody pri medlennykh atomnykh stolknoveniyakh, Atomizdat, M., 1979

[18] O. B. Firsov, “Rezonansnaya perezaryadka ionov pri medlennykh stolknoveniyakh”, ZhETF, 21:3 (1951), 1001–1008

[19] T. M. Kereselidze, M. I. Chibisov, “Asimptoticheskoe povedenie dvukhtsentrovoi kulonovskoi volnovoi funktsii”, Fizika elektronnykh i atomnykh stolknovenii, LFTI, L., 1989, 160–165

[20] B. M. Smirnov, Asimptoticheskie metody v teorii atomnykh stolknovenii, Atomizdat, M., 1973

[21] E. E. Nikitin, B. M. Smirnov, Medlennye atomnye stolknoveniya, Energoatomizdat, M., 1990

[22] M. I. Chibisov, R. K. Janev, “Asymptotic exchange interactions in ion-atom systems”, Phys. Rep., 166:1 (1988), 1–87 | DOI | MR

[23] M. B. Kadomtsev, S. I. Vinitsky, “Perturbation theory within the ${\rm O}(4,2)$ group for a hydrogen-like atom in the field of a distant charge”, J. Phys. A: Math. Gen., 18:12 (1985), L689–L695 | DOI | MR

[24] E. A. Solovev, “Priblizhennyi integral dvizheniya dlya atoma vodoroda v magnitnom pole”, Pisma v ZhETF, 34:5 (1981), 278–281

[25] T. M. Kereselidze, Z. S. Machavariani, I. L. Noselidze, “The one-Coulomb-centre problem in the spheroidal coordinate system: asymptotic solutions”, J. Phys. B, 29:2 (1996), 257–273 | DOI

[26] T. M. Kereselidze, I. L. Noselidze, M. I. Chibisov, “Analytical expressions for two-Coulomb-centre wavefunctions at large internuclear distances”, J. Phys. B, 36:5 (2003), 853–871 | DOI

[27] L. D. Landau, E. M. Lifshits, Kurs teoreticheskoi fiziki, v. 3, Nauka, M., 1989 | Zbl

[28] Dzh. Kheding, Vvedenie v metod fazovykh integralov (metod VKB), Mir, M., 1965 | MR | Zbl

[29] N. Frëman, P. U. Frëman, VKB-priblizhenie, Mir, M., 1967 | MR

[30] L. I. Ponomarev, “Ob asimptoticheskikh predstavleniyakh sferoidalnykh funktsii”, Zh. vychisl. matem. i matem. fiz., 7:1 (1967), 196–198 | DOI | MR

[31] M. V. Berry, K. E. Mount, “Semiclassical approximations in wave mechanics”, Rep. Progr. Phys., 35:1 (1972), 315–397 | DOI