@article{TMF_2017_190_3_a13,
author = {K. Urbanovski},
title = {Properties of the~false vacuum as a~quantum unstable state},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {533--547},
year = {2017},
volume = {190},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2017_190_3_a13/}
}
K. Urbanovski. Properties of the false vacuum as a quantum unstable state. Teoretičeskaâ i matematičeskaâ fizika, Tome 190 (2017) no. 3, pp. 533-547. http://geodesic.mathdoc.fr/item/TMF_2017_190_3_a13/
[1] S. Coleman, “Fate of the false vacuum: semiclassical theory”, Phys. Rev. D, 15:10 (1977), 2929–2936 | DOI
[2] C. G. Callan, S. Coleman, “Fate of the false vacuum. II. First quantum corrections”, Phys. Rev. D, 16:6 (1977), 1762–1768 | DOI
[3] S. Coleman, F. de Lucia, “Gravitational effects on and of vacuum decay”, Phys. Rev. D, 21:12 (1980), 3305–3315 | DOI | MR
[4] F. L. Bezrukov, M. E. Shaposhnikov, “The Standard Model Higgs boson as the inflaton”, Phys. Lett. B, 659:3 (2008), 703–706, arXiv: 0710.3755 | DOI | MR
[5] F. L. Bezrukov, A. Magnin, M. E. Shaposhnikov, “Standard Model Higgs boson mass from inflation”, Phys. Lett. B, 675:1 (2009), 88–92 | DOI
[6] F. L. Bezrukov, M. Yu. Kalmykov, B. A. Kniehl, M. E. Shaposhnikov, “Higgs boson mass and new physics”, JHEP, 10 (2012), 140, arXiv: 1205.2893 | DOI
[7] A. O. Barvinsky, A. Yu. Kamenshchik, A. A. Starobinsky, “Inflation scenario via the Standard Model Higgs boson and LHC”, JCAP, 2008:11 (2008), 021, 14 pp., arXiv: 0809.2104 | DOI
[8] A. O. Barvinsky, A. Yu. Kamenshchik, C. Kiefer, A. A. Starobinsky, C. F. Steinwachs, “Higgs boson, renormalization group, and naturalness in cosmology”, Eur. Phys. J. C, 72:11 (2012), 2219, 11 pp., arXiv: 0910.1041 | DOI
[9] A. O. Barvinsky, A. Yu. Kamenshchik, C. Kiefer, C. F. Steinwachs, “Tunneling cosmological state revisited: origin of inflation with a nonminimally coupled standard model Higgs inflaton”, Phys. Rev. D, 81:4 (2010), 0435530, 9 pp. | DOI | MR
[10] A. O. Barvinskii, “Tunneliruyuschee kosmologicheskoe sostoyanie i proiskhozhdenie khiggsovskoi inflyatsii v Standartnoi modeli”, TMF, 170:1 (2012), 62–86 | DOI | MR
[11] A. Kobakhidze, A. Spencer-Smith, “Electroweak vacuum (in)stability in an inflationary universe”, Phys. Lett. B, 722:1–3 (2013), 130–134 | DOI | Zbl
[12] G. Degrassi, S. Di Vit, J. Elias-Miró, J. R. Espinosa, G. F. Giudice, G. Isidori, A. Strumia, “Higgs mass and vacuum stability in the Standard Model at NNLO”, JHEP, 08 (2012), 098, 33 pp. | DOI
[13] J. Elias-Miró, J. R. Espinosa, G. F. Giudice, G. Isidori, A. Riotto, A. Strumia, “Higgs mass implications on the stability of the electroweak vacuum”, Phys. Lett. B, 709:3 (2012), 222–228 | DOI
[14] W. Chaoet, M. Gonderinger, M. J. Ramsey-Musolf, “Higgs vacuum stability, neutrino mass, and dark matter”, Phys. Rev. D, 86:11 (2012), 113017, 9 pp. | DOI
[15] L. M. Krauss, J. Dent, “Late time behavior of false vacuum decay: possible implications for cosmology and metastable inflating states”, Phys. Rev. Lett., 100:17 (2008), 171301, 4 pp. | DOI | MR | Zbl
[16] S. Winitzki, “Age-dependent decay in the landscape”, Phys. Rev. D, 77:6 (2008), 063508, 10 pp. | DOI
[17] L. A. Khalfin, “K teorii raspada kvazistatsionarnogo sostoyaniya”, ZhETF, 33:6 (1957), 1371–1382
[18] K. Urbanowski, “General properties of the evolution of unstable states at long times”, Eur. Phys. J. D, 54:1 (2009), 25–29 | DOI
[19] K. Urbanowski, “Long time properties of the evolution of an unstable state”, Cent. Eur. J. Phys., 7:4 (2009), 696–703 | DOI
[20] F. Giraldi, “Logarithmic decays of unstable states”, Eur. Phys. J. D, 69:1 (2015), 5, 8 pp. | DOI | MR
[21] V. Branchina, E. Messina, “Stability, Higgs boson mass, and new physics”, Phys. Rev. Lett., 111:23 (2013), 241801, 5 pp. | DOI
[22] F. L. Bezrukov, M. E. Shaposhnikov, “Inflation, LHC and the Higgs boson”, C. R. Phys., 16:10 (2015), 994–1002 | DOI | MR
[23] K. Urbanowski, “Comment on ‘Late time behavior of false vacuum decay: possible implications for cosmology and metastable inflating states’”, Phys. Rev. Lett., 107:20 (2011), 209001, 1 pp. | DOI
[24] K. Urbanowski, M. Szydłowski, “Cosmology with a decaying vacuum”, AIP Conf. Proc., 1514:1 (2013), 143–146 | DOI
[25] M. Szydłowski, “Cosmological model with decaying vacuum energy from quantum mechanics”, Phys. Rev. D, 91:12 (2015), 123538, 13 pp. | DOI | MR
[26] S. Weinberg, “The cosmological constant problem”, Rev. Modern Phys., 61:1 (1989), 1–23 | DOI | MR | Zbl
[27] S. M. Carroll, “The cosmological constant”, Living Rev. Relativity, 3 (2001), lrr-2001-1, 56 pp. | DOI | MR
[28] V. Canuto, S. H. Hsieh, P. J. Adams, “Scale-covariant theory of gravitation and astrophysical applications”, Phys. Rev. Lett., 39:8 (1977), 429–432 | DOI | Zbl
[29] Y. K. Lau, S. J. Prokhovnik, “The large numbers hypothesis and a relativistic theory of gravitation”, Aust. J. Phys., 39:3 (1986), 339–346 | DOI
[30] M. S. Berman, “Cosmological models with a variable cosmological term”, Phys. Rev. D, 43:4 (1991), 1075–1078 | DOI
[31] J. L. Lopez, D. V. Nanopoulos, “A new cosmological constant model”, Modern Phys. Lett. A, 11:1 (1996), 1–7 | DOI | MR
[32] K. Urbanowski, “Early-time properties of quantum evolution”, Phys. Rev. A, 50:4 (1994), 2847–2853 | DOI
[33] A. Peres, “Nonexponential decay law”, Ann. Phys., 129:1 (1980), 33–46 | DOI | MR
[34] V. F. Weisskopf, E. T. Wigner, “Berechnung der natürlichen Linienbreite auf Grund der Diracschen Lichttheorie”, Z. Phys., 63:1 (1930), 54–73 | DOI | Zbl