Properties of the false vacuum as a quantum unstable state
Teoretičeskaâ i matematičeskaâ fizika, Tome 190 (2017) no. 3, pp. 533-547 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We analyze properties of unstable vacuum states from the standpoint of quantum theory. Some suggestions can be found in the literature that some false (unstable) vacuum states can survive up to times when their survival probability takes a nonexponential form. At asymptotically large times, the survival probability as a function of the time $t$ has an inverse power-law form. We show that in this time region, the energy of false vacuum states tends to the energy of the true vacuum state as $1/t^2$ as $t\to\infty$. This means that the energy density in the unstable vacuum state and hence also the cosmological constant $\Lambda=\Lambda(t)$ should have analogous properties. The conclusion is that $\Lambda$ in a universe with an unstable vacuum should have the form of a sum of the "bare" cosmological constant and a term of the type $1/t^2$: $\Lambda(t)\equiv \Lambda_{\text{bare}}+d/t^2$ (where $\Lambda_{\text{bare}}$ is the cosmological constant for a universe with the true vacuum).
Keywords: false vacuum, unstable state, cosmological constant.
@article{TMF_2017_190_3_a13,
     author = {K. Urbanovski},
     title = {Properties of the~false vacuum as a~quantum unstable state},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {533--547},
     year = {2017},
     volume = {190},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_190_3_a13/}
}
TY  - JOUR
AU  - K. Urbanovski
TI  - Properties of the false vacuum as a quantum unstable state
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 533
EP  - 547
VL  - 190
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_190_3_a13/
LA  - ru
ID  - TMF_2017_190_3_a13
ER  - 
%0 Journal Article
%A K. Urbanovski
%T Properties of the false vacuum as a quantum unstable state
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 533-547
%V 190
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2017_190_3_a13/
%G ru
%F TMF_2017_190_3_a13
K. Urbanovski. Properties of the false vacuum as a quantum unstable state. Teoretičeskaâ i matematičeskaâ fizika, Tome 190 (2017) no. 3, pp. 533-547. http://geodesic.mathdoc.fr/item/TMF_2017_190_3_a13/

[1] S. Coleman, “Fate of the false vacuum: semiclassical theory”, Phys. Rev. D, 15:10 (1977), 2929–2936 | DOI

[2] C. G. Callan, S. Coleman, “Fate of the false vacuum. II. First quantum corrections”, Phys. Rev. D, 16:6 (1977), 1762–1768 | DOI

[3] S. Coleman, F. de Lucia, “Gravitational effects on and of vacuum decay”, Phys. Rev. D, 21:12 (1980), 3305–3315 | DOI | MR

[4] F. L. Bezrukov, M. E. Shaposhnikov, “The Standard Model Higgs boson as the inflaton”, Phys. Lett. B, 659:3 (2008), 703–706, arXiv: 0710.3755 | DOI | MR

[5] F. L. Bezrukov, A. Magnin, M. E. Shaposhnikov, “Standard Model Higgs boson mass from inflation”, Phys. Lett. B, 675:1 (2009), 88–92 | DOI

[6] F. L. Bezrukov, M. Yu. Kalmykov, B. A. Kniehl, M. E. Shaposhnikov, “Higgs boson mass and new physics”, JHEP, 10 (2012), 140, arXiv: 1205.2893 | DOI

[7] A. O. Barvinsky, A. Yu. Kamenshchik, A. A. Starobinsky, “Inflation scenario via the Standard Model Higgs boson and LHC”, JCAP, 2008:11 (2008), 021, 14 pp., arXiv: 0809.2104 | DOI

[8] A. O. Barvinsky, A. Yu. Kamenshchik, C. Kiefer, A. A. Starobinsky, C. F. Steinwachs, “Higgs boson, renormalization group, and naturalness in cosmology”, Eur. Phys. J. C, 72:11 (2012), 2219, 11 pp., arXiv: 0910.1041 | DOI

[9] A. O. Barvinsky, A. Yu. Kamenshchik, C. Kiefer, C. F. Steinwachs, “Tunneling cosmological state revisited: origin of inflation with a nonminimally coupled standard model Higgs inflaton”, Phys. Rev. D, 81:4 (2010), 0435530, 9 pp. | DOI | MR

[10] A. O. Barvinskii, “Tunneliruyuschee kosmologicheskoe sostoyanie i proiskhozhdenie khiggsovskoi inflyatsii v Standartnoi modeli”, TMF, 170:1 (2012), 62–86 | DOI | MR

[11] A. Kobakhidze, A. Spencer-Smith, “Electroweak vacuum (in)stability in an inflationary universe”, Phys. Lett. B, 722:1–3 (2013), 130–134 | DOI | Zbl

[12] G. Degrassi, S. Di Vit, J. Elias-Miró, J. R. Espinosa, G. F. Giudice, G. Isidori, A. Strumia, “Higgs mass and vacuum stability in the Standard Model at NNLO”, JHEP, 08 (2012), 098, 33 pp. | DOI

[13] J. Elias-Miró, J. R. Espinosa, G. F. Giudice, G. Isidori, A. Riotto, A. Strumia, “Higgs mass implications on the stability of the electroweak vacuum”, Phys. Lett. B, 709:3 (2012), 222–228 | DOI

[14] W. Chaoet, M. Gonderinger, M. J. Ramsey-Musolf, “Higgs vacuum stability, neutrino mass, and dark matter”, Phys. Rev. D, 86:11 (2012), 113017, 9 pp. | DOI

[15] L. M. Krauss, J. Dent, “Late time behavior of false vacuum decay: possible implications for cosmology and metastable inflating states”, Phys. Rev. Lett., 100:17 (2008), 171301, 4 pp. | DOI | MR | Zbl

[16] S. Winitzki, “Age-dependent decay in the landscape”, Phys. Rev. D, 77:6 (2008), 063508, 10 pp. | DOI

[17] L. A. Khalfin, “K teorii raspada kvazistatsionarnogo sostoyaniya”, ZhETF, 33:6 (1957), 1371–1382

[18] K. Urbanowski, “General properties of the evolution of unstable states at long times”, Eur. Phys. J. D, 54:1 (2009), 25–29 | DOI

[19] K. Urbanowski, “Long time properties of the evolution of an unstable state”, Cent. Eur. J. Phys., 7:4 (2009), 696–703 | DOI

[20] F. Giraldi, “Logarithmic decays of unstable states”, Eur. Phys. J. D, 69:1 (2015), 5, 8 pp. | DOI | MR

[21] V. Branchina, E. Messina, “Stability, Higgs boson mass, and new physics”, Phys. Rev. Lett., 111:23 (2013), 241801, 5 pp. | DOI

[22] F. L. Bezrukov, M. E. Shaposhnikov, “Inflation, LHC and the Higgs boson”, C. R. Phys., 16:10 (2015), 994–1002 | DOI | MR

[23] K. Urbanowski, “Comment on ‘Late time behavior of false vacuum decay: possible implications for cosmology and metastable inflating states’”, Phys. Rev. Lett., 107:20 (2011), 209001, 1 pp. | DOI

[24] K. Urbanowski, M. Szydłowski, “Cosmology with a decaying vacuum”, AIP Conf. Proc., 1514:1 (2013), 143–146 | DOI

[25] M. Szydłowski, “Cosmological model with decaying vacuum energy from quantum mechanics”, Phys. Rev. D, 91:12 (2015), 123538, 13 pp. | DOI | MR

[26] S. Weinberg, “The cosmological constant problem”, Rev. Modern Phys., 61:1 (1989), 1–23 | DOI | MR | Zbl

[27] S. M. Carroll, “The cosmological constant”, Living Rev. Relativity, 3 (2001), lrr-2001-1, 56 pp. | DOI | MR

[28] V. Canuto, S. H. Hsieh, P. J. Adams, “Scale-covariant theory of gravitation and astrophysical applications”, Phys. Rev. Lett., 39:8 (1977), 429–432 | DOI | Zbl

[29] Y. K. Lau, S. J. Prokhovnik, “The large numbers hypothesis and a relativistic theory of gravitation”, Aust. J. Phys., 39:3 (1986), 339–346 | DOI

[30] M. S. Berman, “Cosmological models with a variable cosmological term”, Phys. Rev. D, 43:4 (1991), 1075–1078 | DOI

[31] J. L. Lopez, D. V. Nanopoulos, “A new cosmological constant model”, Modern Phys. Lett. A, 11:1 (1996), 1–7 | DOI | MR

[32] K. Urbanowski, “Early-time properties of quantum evolution”, Phys. Rev. A, 50:4 (1994), 2847–2853 | DOI

[33] A. Peres, “Nonexponential decay law”, Ann. Phys., 129:1 (1980), 33–46 | DOI | MR

[34] V. F. Weisskopf, E. T. Wigner, “Berechnung der natürlichen Linienbreite auf Grund der Diracschen Lichttheorie”, Z. Phys., 63:1 (1930), 54–73 | DOI | Zbl