The method of uniqueness and the optical conductivity of graphene: New application of a powerful technique for multiloop calculations
Teoretičeskaâ i matematičeskaâ fizika, Tome 190 (2017) no. 3, pp. 519-532 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We briefly review the uniqueness method, which is a powerful technique for calculating multiloop Feynman diagrams in theories with conformal symmetries. We use the method in the momentum space and show its effectiveness in calculating a two-loop massless propagator Feynman diagram with a noninteger index on the central line. We use the obtained result to compute the optical conductivity of graphene at the infrared Lorentz-invariant fixed point. We analyze the effect of counterterms and compare with the nonrelativistic limit.
Keywords: Feynman diagram, uniqueness, optical conductivity.
Mots-clés : multiloop calculations, graphene
@article{TMF_2017_190_3_a12,
     author = {S. Teber and A. V. Kotikov},
     title = {The~method of uniqueness and the~optical conductivity of graphene: {New} application of a~powerful technique for multiloop calculations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {519--532},
     year = {2017},
     volume = {190},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_190_3_a12/}
}
TY  - JOUR
AU  - S. Teber
AU  - A. V. Kotikov
TI  - The method of uniqueness and the optical conductivity of graphene: New application of a powerful technique for multiloop calculations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 519
EP  - 532
VL  - 190
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_190_3_a12/
LA  - ru
ID  - TMF_2017_190_3_a12
ER  - 
%0 Journal Article
%A S. Teber
%A A. V. Kotikov
%T The method of uniqueness and the optical conductivity of graphene: New application of a powerful technique for multiloop calculations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 519-532
%V 190
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2017_190_3_a12/
%G ru
%F TMF_2017_190_3_a12
S. Teber; A. V. Kotikov. The method of uniqueness and the optical conductivity of graphene: New application of a powerful technique for multiloop calculations. Teoretičeskaâ i matematičeskaâ fizika, Tome 190 (2017) no. 3, pp. 519-532. http://geodesic.mathdoc.fr/item/TMF_2017_190_3_a12/

[1] A. N. Vasilev, Yu. M. Pismak, Yu. R. Khonkonen, “$1/n$-Razlozhenie: raschet indeksov $\eta$ i $\nu$ v poryadke $1/n^2$ dlya proizvolnoi razmernosti”, TMF, 47:3 (1981), 291–306 | DOI

[2] K. G. Chetyrkin, F. V. Tkachov, “Integration by parts: the algorithm to calculate $\beta$-functions in 4 loops”, Nucl. Phys. B, 192:1 (1981), 159–204 | DOI

[3] S. Laporta, “High-precision calculation of multiloop Feynman integrals by difference equations”, Internat. J. Modern Phys. A, 15:32 (2000), 5087–5159 | DOI | MR | Zbl

[4] K. G. Chetyrkin, A. L. Kataev, F. V. Tkachov, “New approach to evaluation of multiloop Feynman integrals: the Gegenbauer polynomial $x$-space technique”, Nucl. Phys. B, 174:2–3 (1980), 345–377 | DOI | MR

[5] A. V. Kotikov, “The Gegenbauer polynomial technique: the evaluation of a class of Feynman diagrams”, Phys. Lett. B, 375:1–4 (1996), 240–248 | DOI | MR | Zbl

[6] M. D'Eramo, L. Pelitti, G. Parisi, “Theoretical predictions for critical exponents at the $\lambda$-point of Bose liquids”, Lett. Nuovo Cimento, 2:17 (1971), 878–880 | DOI

[7] N. I. Usyukina, “O vychislenii mnogopetlevykh diagramm teorii vozmuschenii”, TMF, 54:1 (1983), 124–129 | DOI

[8] D. I. Kazakov, “Vychislenie feinmanovskikh integralov metodom “unikalnostei””, TMF, 58:3 (1984), 343–353 | DOI | MR

[9] D. I. Kazakov, “Mnogopetlevye vychisleniya: metod unikalnostei i funktsionalnye uravneniya”, TMF, 62:1 (1985), 127–135 ; D. I. Kazakov, “The method of uniqueness, a new powerful technique for multiloop calculations”, Phys. Lett. B, 133:6 (1983), 406–410 | DOI | DOI

[10] D. I. Kazakov, Analytical methods for multiloop calculations: two lectures on the method of uniqueness, Preprint JINR E2-84-410, JINR, Dubna, 1984 | MR

[11] A. G. Grozin, “Massless two-loop self-energy diagram: historical review”, Internat. J. Modern Phys. A, 27:19 (2012), 1230018, 22 pp. | DOI | MR | Zbl

[12] D. J. Broadhurst, “Exploiting the 1, 440-fold symmetry of the master two-loop diagram”, Z. Phys. C: Part. Fields, 32:2 (1986), 249–253 | DOI

[13] D. T. Barfoot, D. J. Broadhurst, “$Z_2\times S_6$ symmetry of the two-loop diagram”, Z. Phys. C, 41:1 (1988), 81–85 | DOI | MR

[14] J. A. Gracey, “On the evaluation of massless Feynman diagrams by the method of uniqueness”, Phys. Lett. B, 277:4 (1992), 469–473 | DOI | MR

[15] N. A. Kivel, A. S. Stepanenko, A. N. Vasil'ev, “On the calculation of $2+\varepsilon$ RG functions in the Gross–Neveu model from large-$N$ expansions of critical exponents”, Nucl. Phys. B, 424:3 (1994), 619–627 ; А. Н. Васильев, С. Э. Деркачев, Н. А. Кивель, А. С. Степаненко, “$1/n$-Разложение в модели Гросса–Нэве: расчет индекса $\eta$ в порядке $1/n^3$ методом конформного бутстрапа”, ТМФ, 94:2 (1993), 179–192, arXiv: hep-th/9302034 | DOI | MR | DOI

[16] D. J. Broadhurst, J. A. Gracey, D. Kreimer, “Beyond the triangle and uniqueness relations: non-zeta counterterms at large $N$ from positive knots”, Z. Phys. C, 75:3 (1997), 559–574 | DOI | MR

[17] D. J. Broadhurst, A. V. Kotikov, “Compact analytical form for non-zeta terms in critical exponents at order $1/N^3$”, Phys. Lett. B, 441:1–4 (1998), 345–353 | DOI | MR

[18] D. J. Broadhurst, “Where do the tedious products of $\zeta$'s come from?”, Nucl. Phys. Proc. Suppl., 116 (2003), 432–436 | DOI | Zbl

[19] I. Bierenbaum, S. Weinzierl, “The massless two-loop two-point function”, Eur. Phys. J. C, 32:1 (2003), 67–78 | DOI | Zbl

[20] A. V. Kotikov, S. Teber, “Note on an application of the method of uniqueness to reduced quantum electrodynamics”, Phys. Rev. D, 87:8 (2013), 087701, 5 pp. | DOI

[21] A. V. Kotikov, S. Teber, “Two-loop fermion self-energy in reduced quantum electrodynamics and application to the ultrarelativistic limit of graphene”, Phys. Rev. D, 89:6 (2014), 065038, 24 pp. | DOI

[22] S. Teber, “Electromagnetic current correlations in reduced quantum electrodynamics”, Phys. Rev. D, 86:2 (2012), 025005, 9 pp. | DOI

[23] J. González, F. Guinea, M. A. H. Vozmediano, “Non-Fermi liquid behavior of electrons in the half-filled honeycomb lattice (A renormalization group approach)”, Nucl. Phys. B, 424:3 (1994), 595–618 | DOI

[24] D. C. Elias, R. V. Gorbachev, A. S. Mayorov, S. V. Morozov, A. A. Zhukov, P. Blake, L. A. Ponomarenko, I. V. Grigorieva, K. S. Novoselov, F. Guinea, A. K. Geim, “Dirac cones reshaped by interaction effects in suspended graphene”, Nature Phys., 7:9 (2011), 701–704 | DOI | MR

[25] E. V. Gorbar, V. P. Gusynin, V. A. Miransky, “Dynamical chiral symmetry breaking on a brane in reduced QED”, Phys. Rev. D, 64:10 (2001), 105028, 16 pp. | DOI | MR

[26] E. C. Marino, “Quantum electrodynamics of particles on a plane and the Chern–Simons theory”, Nucl. Phys. B, 408:3 (1993), 551–564 ; N. Dorey, N. E. Mavromatos, “QED${}_3$ and two-dimensional superconductivity without parity violation”, Nucl. Phys. B, 386:3 (1992), 614–680 ; A. Kovner, B. Rosenstein, “Kosterlitz–Thouless mechanism of two-dimensional superconductivity”, Phys. Rev. B, 42:7 (1990), 4748–4751 | DOI | MR | Zbl | DOI | DOI

[27] A. W. W. Ludwig, M. P. A. Fisher, R. Shankar, G. Grinstein, “Integer quantum Hall transition: An alternative approach and exact results”, Phys. Rev. B, 50:11 (1994), 7526–7552 | DOI

[28] E. G. Mishchenko, “Minimal conductivity in graphene: Interaction corrections and ultraviolet anomaly”, Europhys. Lett., 83:1 (2008), 17005, 5 pp. | DOI | MR

[29] I. F. Herbut, V. Juričić, O. Vafek, “Coulomb interaction, ripples, and the minimal conductivity of graphene”, Phys. Rev. Lett., 100:4 (2008), 046403, 4 pp. ; D. E. Sheehy, J. Schmalian, “Optical transparency of graphene as determined by the fine-structure constant”, Phys. Rev. B, 80:19 (2009), 193411, 4 pp. ; V. Juričić, O. Vafek, I. F. Herbut, “Conductivity of interacting massless Dirac particles in graphene: collisionless regime”, Phys. Rev. B, 82:23 (2010), 235402, 32 pp. ; F. de Juan, A. G. Grushin, M. A. H. Vozmediano, “Renormalization of Coulomb interaction in graphene: Determining observable quantities”, Phys. Rev. B, 82:12 (2010), 125409, 7 pp. ; S. H. Abedinpour, G. Vignale, A. Principi, M. Polini, W-K. Tse, A. H. MacDonald, “Drude weight, plasmon dispersion, and ac conductivity in doped graphene sheets”, Phys. Rev. B, 84:4 (2011), 045429, 14 pp. ; I. Sodemann, M. M. Fogler, “Interaction corrections to the polarization function of graphene”, Phys. Rev. B, 86:11 (2012), 115408, 8 pp. ; B. Rosenstein, M. Lewkowicz, T. Maniv, “Chiral anomaly and strength of the electron-electron interaction in graphene”, Phys. Rev. Lett., 110:6 (2013), 066602, 5 pp. ; G. Gazzola, A. L. Cherchiglia, L. A. Cabral, M. C. Nemes, M. Sampaio, “Conductivity of Coulomb interacting massless Dirac particles in graphene: regularization-dependent parameters and symmetry constraints”, Europhys. Lett., 104:2 (2013), 27002, 6 pp., arXiv: ; J. Link, P. P. Orth, D. E. Sheehy, J. Schmalian, “Universal collisionless transport of graphene”, Phys. Rev. B, 93 (2016), 235447, arXiv: 1305.63341511.05984 | DOI | DOI | DOI | DOI | DOI | DOI | DOI | DOI | MR | DOI

[30] S. Teber, A. V. Kotikov, “Interaction corrections to the minimal conductivity of graphene via dimensional regularization”, Europhys. Lett., 107:5 (2014), 57001, 7 pp. | DOI

[31] A. Giuliani, V. Mastropietro, M. Porta, “Absence of interaction corrections in the optical conductivity of graphene”, Phys. Rev. B, 83:19 (2011), 195401, 6 pp. | DOI

[32] I. F. Herbut, V. Mastropietro, “Universal conductivity of graphene in the ultrarelativistic regime”, Phys. Rev. B, 87:20 (2013), 205445, 5 pp. | DOI

[33] K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, T. F. Heinz, “Measurement of the optical conductivity of graphene”, Phys. Rev. Lett., 101:19 (2008), 196405, 4 pp. | DOI

[34] N. M. R. Peres, “The transport properties of graphene: an introduction”, Rev. Modern Phys., 82:3 (2010), 2673–2700 | DOI