Mots-clés : Planck scale.
@article{TMF_2017_190_3_a11,
author = {A. N. Starodubtsev},
title = {New approach to calculating the~spectrum of a~quantum space{\textendash}time},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {511--518},
year = {2017},
volume = {190},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2017_190_3_a11/}
}
A. N. Starodubtsev. New approach to calculating the spectrum of a quantum space–time. Teoretičeskaâ i matematičeskaâ fizika, Tome 190 (2017) no. 3, pp. 511-518. http://geodesic.mathdoc.fr/item/TMF_2017_190_3_a11/
[1] C. Rovelli, L. Smolin, “Discreteness of area and volume in quantum gravity”, Nucl. Phys. B, 442:3 (1995), 593–619 ; Erratum, 456:3 (1995), 753–754 ; arXiv: ; A. Ashtekar, J. Lewandowski, “Quantum theory of geometry. I. Area operators”, Class. Quantum Grav., 14:1A (1997), A55–A81, arXiv: gr-qc/9411005gr-qc/9602046 | DOI | MR | Zbl | DOI | MR | DOI | MR | Zbl
[2] J. Ambjørn, J. Jurkiewicz, R. Loll, “Nonperturbative Lorentzian path integral for gravity”, Phys. Rev. Lett., 85:5 (2000), arXiv: ; “Emergence of a 4D world from causal quantum gravity”, Phys. Rev. Lett., 93:13 (2004), 131301, 4 pp., arXiv: ; “Reconstructing the universe”, Phys. Rev. D, 72:6 (2005), 064014, 24 pp., arXiv: hep-th/0002050hep-th/0404156hep-th/0505154 | DOI | MR | Zbl | DOI | MR | DOI
[3] M. Bronstein, “Quantentheorie schwacher Gravitationsfelder”, Phys. Z. Sowjetunion, 9 (1936), 140–157 | Zbl
[4] G. 't Hooft, “Canonical quantization of gravitating point particles in ${2+1}$ dimensions”, Class. Quantum Grav., 10:8 (1993), 1653–1664 ; “Quantization of point particles in ${(2+1)}$-dimensional gravity and spacetime discreteness”, Class. Quantum Grav., 13:5 (1996), 1023–1039 | DOI | MR | Zbl | DOI | MR | Zbl
[5] H.-J. Matschull, M. Welling, “Quantum mechanics of a point particle in $2+1$ dimensional gravity”, Class. Quantum Grav., 15:10 (1998), 2981–3030, arXiv: gr-qc/9708054 | DOI | MR | Zbl
[6] A. N. Starodubtsev, “Fazovoe prostranstvo gravitiruyuschei chastitsy i razmernaya reduktsiya na plankovskikh masshtabakh”, TMF, 185:1 (2015), 192–198 | DOI | DOI | MR | Zbl
[7] S. W. MacDowell, F. Mansouri, “Unified geometric theory of gravity and supergravity”, Phys. Rev. Lett., 38:14 (1977), 739–742 | DOI | MR
[8] G. W. Moore, N. Seiberg, “Taming the conformal zoo”, Phys. Lett. B, 220:3 (1989), 422–430 | DOI | MR
[9] S. Carlip, “Statistical mechanics and black hole thermodynamics”, Nucl. Phys. B: Proc. Suppl., 57:1–3 (1997), 8–12 ; E. Witten, “On holomorphic factorization of WZW and coset models”, Commun. Math. Phys., 144:1 (1992), 189–212 | DOI | MR | Zbl | DOI | MR | Zbl
[10] G. 't Hooft, “Magnetic monopoles in unified gauge theories”, Nucl. Phys. B, 79:2 (1974), 276–284 ; А. М. Поляков, “Спектр частиц в квантовой теории поля”, Письма в ЖЭТФ, 20:6, 430–433 | DOI | MR
[11] A. Yu. Alekseev, A. Z. Malkin, “Symplectic structure of the moduli space of flat connection on a Riemann surface”, Commun. Math. Phys., 169:1 (1995), 99–119, arXiv: ; C. Meusburger, B. J. Schroers, “Phase space structure of Chern–Simons theory with a non-standard puncture”, Nucl. Phys. B, 738:3 (2006), 425–456, arXiv: hep-th/9312004hep-th/0505143 | DOI | MR | Zbl | DOI | MR | Zbl
[12] T. T. Wu, C. N. Yang, “Concept of nonintegrable phase factors and global formulation of gauge fields”, Phys. Rev. D, 12:12 (1975), 3845–3857 | DOI | MR
[13] S. Alexandrov, D. Vassilevich, “Area spectrum in Lorentz covariant loop gravity”, Phys. Rev. D, 64:4 (2001), 044023, 7 pp., arXiv: ; S. Alexandrov, Z. Kádár, “Timelike surfaces in Lorentz covariant loop gravity and spin foam models”, Class. Quantum Grav., 22:17 (2005), 3491–3509, arXiv: gr-qc/0103105gr-qc/0501093 | DOI | MR | DOI | MR | Zbl
[14] V. A. Berezin, A. M. Boyarsky, A. Yu. Neronov, “Quantum geometrodynamics for black holes and wormholes”, Phys. Rev. D, 57:2 (1998), 1118–1128, arXiv: ; V. Berezin, “Towards a theory of quantum black holes”, Internat. J. Modern Phys. A, 17:6–7 (2002), 979–988, arXiv: gr-qc/9708060gr-qc/0112022 | DOI | MR | DOI | MR | Zbl