New approach to calculating the spectrum of a quantum space–time
Teoretičeskaâ i matematičeskaâ fizika, Tome 190 (2017) no. 3, pp. 511-518 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the dynamics of a massive pointlike particle coupled to gravity in four space–time dimensions. It has the same degrees of freedom as an ordinary particle{:} its coordinates with respect to a chosen origin (observer) and the canonically conjugate momenta. The effect of gravity is that such a particle is a black hole: its momentum becomes spacelike at a distances to the origin less than the Schwarzschild radius. This happens because the phase space of the particle has a nontrivial structure: the momentum space has curvature, and this curvature depends on the position in the coordinate space. The momentum space curvature in turn leads to the coordinate operator in quantum theory having a nontrivial spectrum. This spectrum is independent of the particle mass and determines the accessible points of space–time.
Keywords: quantization of gravity, conformal field theory, space–time discreteness
Mots-clés : Planck scale.
@article{TMF_2017_190_3_a11,
     author = {A. N. Starodubtsev},
     title = {New approach to calculating the~spectrum of a~quantum space{\textendash}time},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {511--518},
     year = {2017},
     volume = {190},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_190_3_a11/}
}
TY  - JOUR
AU  - A. N. Starodubtsev
TI  - New approach to calculating the spectrum of a quantum space–time
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 511
EP  - 518
VL  - 190
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_190_3_a11/
LA  - ru
ID  - TMF_2017_190_3_a11
ER  - 
%0 Journal Article
%A A. N. Starodubtsev
%T New approach to calculating the spectrum of a quantum space–time
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 511-518
%V 190
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2017_190_3_a11/
%G ru
%F TMF_2017_190_3_a11
A. N. Starodubtsev. New approach to calculating the spectrum of a quantum space–time. Teoretičeskaâ i matematičeskaâ fizika, Tome 190 (2017) no. 3, pp. 511-518. http://geodesic.mathdoc.fr/item/TMF_2017_190_3_a11/

[1] C. Rovelli, L. Smolin, “Discreteness of area and volume in quantum gravity”, Nucl. Phys. B, 442:3 (1995), 593–619 ; Erratum, 456:3 (1995), 753–754 ; arXiv: ; A. Ashtekar, J. Lewandowski, “Quantum theory of geometry. I. Area operators”, Class. Quantum Grav., 14:1A (1997), A55–A81, arXiv: gr-qc/9411005gr-qc/9602046 | DOI | MR | Zbl | DOI | MR | DOI | MR | Zbl

[2] J. Ambjørn, J. Jurkiewicz, R. Loll, “Nonperturbative Lorentzian path integral for gravity”, Phys. Rev. Lett., 85:5 (2000), arXiv: ; “Emergence of a 4D world from causal quantum gravity”, Phys. Rev. Lett., 93:13 (2004), 131301, 4 pp., arXiv: ; “Reconstructing the universe”, Phys. Rev. D, 72:6 (2005), 064014, 24 pp., arXiv: hep-th/0002050hep-th/0404156hep-th/0505154 | DOI | MR | Zbl | DOI | MR | DOI

[3] M. Bronstein, “Quantentheorie schwacher Gravitationsfelder”, Phys. Z. Sowjetunion, 9 (1936), 140–157 | Zbl

[4] G. 't Hooft, “Canonical quantization of gravitating point particles in ${2+1}$ dimensions”, Class. Quantum Grav., 10:8 (1993), 1653–1664 ; “Quantization of point particles in ${(2+1)}$-dimensional gravity and spacetime discreteness”, Class. Quantum Grav., 13:5 (1996), 1023–1039 | DOI | MR | Zbl | DOI | MR | Zbl

[5] H.-J. Matschull, M. Welling, “Quantum mechanics of a point particle in $2+1$ dimensional gravity”, Class. Quantum Grav., 15:10 (1998), 2981–3030, arXiv: gr-qc/9708054 | DOI | MR | Zbl

[6] A. N. Starodubtsev, “Fazovoe prostranstvo gravitiruyuschei chastitsy i razmernaya reduktsiya na plankovskikh masshtabakh”, TMF, 185:1 (2015), 192–198 | DOI | DOI | MR | Zbl

[7] S. W. MacDowell, F. Mansouri, “Unified geometric theory of gravity and supergravity”, Phys. Rev. Lett., 38:14 (1977), 739–742 | DOI | MR

[8] G. W. Moore, N. Seiberg, “Taming the conformal zoo”, Phys. Lett. B, 220:3 (1989), 422–430 | DOI | MR

[9] S. Carlip, “Statistical mechanics and black hole thermodynamics”, Nucl. Phys. B: Proc. Suppl., 57:1–3 (1997), 8–12 ; E. Witten, “On holomorphic factorization of WZW and coset models”, Commun. Math. Phys., 144:1 (1992), 189–212 | DOI | MR | Zbl | DOI | MR | Zbl

[10] G. 't Hooft, “Magnetic monopoles in unified gauge theories”, Nucl. Phys. B, 79:2 (1974), 276–284 ; А. М. Поляков, “Спектр частиц в квантовой теории поля”, Письма в ЖЭТФ, 20:6, 430–433 | DOI | MR

[11] A. Yu. Alekseev, A. Z. Malkin, “Symplectic structure of the moduli space of flat connection on a Riemann surface”, Commun. Math. Phys., 169:1 (1995), 99–119, arXiv: ; C. Meusburger, B. J. Schroers, “Phase space structure of Chern–Simons theory with a non-standard puncture”, Nucl. Phys. B, 738:3 (2006), 425–456, arXiv: hep-th/9312004hep-th/0505143 | DOI | MR | Zbl | DOI | MR | Zbl

[12] T. T. Wu, C. N. Yang, “Concept of nonintegrable phase factors and global formulation of gauge fields”, Phys. Rev. D, 12:12 (1975), 3845–3857 | DOI | MR

[13] S. Alexandrov, D. Vassilevich, “Area spectrum in Lorentz covariant loop gravity”, Phys. Rev. D, 64:4 (2001), 044023, 7 pp., arXiv: ; S. Alexandrov, Z. Kádár, “Timelike surfaces in Lorentz covariant loop gravity and spin foam models”, Class. Quantum Grav., 22:17 (2005), 3491–3509, arXiv: gr-qc/0103105gr-qc/0501093 | DOI | MR | DOI | MR | Zbl

[14] V. A. Berezin, A. M. Boyarsky, A. Yu. Neronov, “Quantum geometrodynamics for black holes and wormholes”, Phys. Rev. D, 57:2 (1998), 1118–1128, arXiv: ; V. Berezin, “Towards a theory of quantum black holes”, Internat. J. Modern Phys. A, 17:6–7 (2002), 979–988, arXiv: gr-qc/9708060gr-qc/0112022 | DOI | MR | DOI | MR | Zbl