Renormalized coupling constants for the three-dimensional scalar $\lambda\phi^4$ field theory and pseudo-$\epsilon$-expansion
Teoretičeskaâ i matematičeskaâ fizika, Tome 190 (2017) no. 3, pp. 502-510 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The renormalized coupling constants $g_{2k}$ that enter the equation of state and determine nonlinear susceptibilities of the system have universal values $g_{2k}^*$ at the Curie point. We use the pseudo-$\epsilon$-expansion approach to calculate them together with the ratios $R_{2k}^{}=g_{2k}^{}/ g_4^{k-1}$ for the three-dimensional scalar $\lambda\phi^4$ field theory. We derive pseudo-$\epsilon$-expansions for $g_6^*$, $g_8^*$, $R_6^*$, and $R_8^*$ in the five-loop approximation and present numerical estimates for $R_6^*$ and $R_8^*$. The higher-order coefficients of the pseudo-$\epsilon$-expansions for $g_6^*$ and $R_6^*$ are so small that simple Padé approximants turn out to suffice for very good numerical results. Using them gives $R_6^*= 1.650$, while the recent lattice calculation gave $R_6^*=1.649(2)$. The pseudo-$\epsilon$-expansions of $g_8^*$ and $R_8^*$ are less favorable from the numerical standpoint. Nevertheless, Padé–Borel summation of the series for $R_8^*$ gives the estimate $R_8^*=0.890$, differing only slightly from the values $R_8^*=0.871$ and $R_8^*=0.857$ extracted from the results of lattice and field theory calculations.
Keywords: nonlinear susceptibility, effective coupling constant, Ising model, renormalization group
Mots-clés : pseudo-$\epsilon$-expansion.
@article{TMF_2017_190_3_a10,
     author = {M. A. Nikitina and A. I. Sokolov},
     title = {Renormalized coupling constants for the~three-dimensional scalar $\lambda\phi^4$ field theory and pseudo-$\epsilon$-expansion},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {502--510},
     year = {2017},
     volume = {190},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_190_3_a10/}
}
TY  - JOUR
AU  - M. A. Nikitina
AU  - A. I. Sokolov
TI  - Renormalized coupling constants for the three-dimensional scalar $\lambda\phi^4$ field theory and pseudo-$\epsilon$-expansion
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 502
EP  - 510
VL  - 190
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_190_3_a10/
LA  - ru
ID  - TMF_2017_190_3_a10
ER  - 
%0 Journal Article
%A M. A. Nikitina
%A A. I. Sokolov
%T Renormalized coupling constants for the three-dimensional scalar $\lambda\phi^4$ field theory and pseudo-$\epsilon$-expansion
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 502-510
%V 190
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2017_190_3_a10/
%G ru
%F TMF_2017_190_3_a10
M. A. Nikitina; A. I. Sokolov. Renormalized coupling constants for the three-dimensional scalar $\lambda\phi^4$ field theory and pseudo-$\epsilon$-expansion. Teoretičeskaâ i matematičeskaâ fizika, Tome 190 (2017) no. 3, pp. 502-510. http://geodesic.mathdoc.fr/item/TMF_2017_190_3_a10/

[1] G. A. Baker, “Analysis of hyperscaling in the Ising model by the high-temperature series method”, Phys. Rev. B, 15:3 (1977), 1552–1559 | DOI

[2] J. C. Le Guillou, J. Zinn-Justin, “Critical exponents for the $n$-vector model in three dimensions from field theory”, Phys. Rev. Lett., 39:2 (1977), 95–98 | DOI | MR

[3] G. A. Baker, B. G. Nickel, D. I. Meiron, “Critical indices from perturbation analysis of the Callan–Symanzik equation”, Phys. Rev. B, 17:3 (1978), 1365–1374 | DOI

[4] J. C. Le Guillou, J. Zinn-Justin, “Critical exponents from field theory”, Phys. Rev. B, 21:9 (1980), 3976–3998 | DOI | MR | Zbl

[5] C. Bagnuls, C. Bervillier, “Field-theoretical approach to critical phenomena”, Phys. Rev. B, 41:1 (1990), 402–406 | DOI

[6] C. M. Bender, S. Boettcher, L. Lipatov, “Dimensional expansions”, Phys. Rev. Lett., 68:25 (1992), 3674–3677 | DOI | MR | Zbl

[7] C. M. Bender, S. Boettcher, “Dimensional expansion for the Ising limit of quantum field theory”, Phys. Rev. D, 48:10 (1993), 4919–4923, arXiv: hep-th/9311060 | DOI

[8] N. Tetradis, C. Wetterich, “Critical exponents from the effective average action”, Nucl. Phys. B, 422:3 (1994), 541–592, arXiv: hep-ph/9308214 | DOI | MR

[9] C. M. Bender, S. Boettcher, “Eleventh-order calculation of Ising-limit Green's functions for scalar quantum field theory in arbitrary space-time dimension $D$”, Phys. Rev. D, 51:4 (1995), 1875–1879, arXiv: hep-th/9405043 | DOI

[10] T. Reisz, “High temperature critical $O(N)$ field models by LCE series”, Phys. Lett. B, 360:1–2 (1995), 77–82 | DOI

[11] S. A. Antonenko, A. I. Sokolov, “Critical exponents for a three-dimensional $O(n)$-symmetric model with $n>3$”, Phys. Rev. E, 51:3 (1995), 1894–1898, arXiv: hep-th/9803264 | DOI | MR

[12] M. Campostrini, A. Pelissetto, P. Rossi, E. Vicari, “Four-point renormalized coupling constant in $O(N)$ models”, Nucl. Phys. B, 459:1–2 (1996), 207–242, arXiv: hep-lat/9506002 | DOI

[13] A. I. Sokolov, “Renormalizatsionnaya gruppa i trekhchastichnoe vzaimodeistvie v kriticheskoi oblasti”, FTT, 38:2 (1996), 640–642

[14] S.-Y. Zinn, S.-N. Lai, M. E. Fisher, “Renormalized coupling constants and related amplitude ratios for Ising systems”, Phys. Rev. E, 54:2 (1996), 1176–1182 | DOI

[15] A. I. Sokolov, E. V. Orlov, V. A. Ul'kov, “Universal sextic effective interaction at criticality”, Phys. Lett. A, 227:3–4 (1997), 255–258, arXiv: cond-mat/9803357 | DOI

[16] R. Guida, J. Zinn-Justin, “3D Ising model: the scaling equation of state”, Nucl. Phys. B, 489:3 (1997), 626–652, arXiv: hep-th/9610223 | DOI | MR

[17] T. R. Morris, “Three-dimensional massive scalar field theory and the derivative expansion of the renormalization group”, Nucl. Phys. B, 495:3 (1997), 477–504, arXiv: hep-th/9612117 | DOI

[18] P. Butera, M. Comi, “2n-point renormalized coupling constants in the three-dimensional Ising model: estimates by high temperature series to order B$^{17}$”, Phys. Rev. E, 55:6 (1997), 6391–6396, arXiv: hep-lat/9703017 | DOI

[19] R. Guida, J. Zinn-Justin, “Critical exponents of the N-vector model”, J. Phys. A: Math. Gen., 31:9 (1998), 8103–8121, arXiv: cond-mat/9803240 | DOI | MR | Zbl

[20] P. Butera, M. Comi, “Renormalized couplings and scaling correction amplitudes in the $N$-vector spin models on the sc and the bcc lattices”, Phys. Rev. B, 58:17 (1998), 11552–11569, arXiv: hep-lat/9805025 | DOI

[21] A. Pelissetto, E. Vicari, “Four-point renormalized coupling constant and Callan–Symanzik $\beta$-function in $O(N)$ models”, Nucl. Phys. B, 519:3 (1998), 626–660, arXiv: cond-mat/9711078 | DOI | MR | Zbl

[22] A. Pelissetto, E. Vicari, “The effective potential in three-dimensional $O(N)$ models”, Nucl. Phys. B, 522:3 (1998), 605–624, arXiv: cond-mat/9801098 | DOI | MR

[23] A. I. Sokolov, “Universalnye effektivnye konstanty svyazi dlya obobschennoi modeli Geizenberga”, FTT, 40:7 (1998), 1284–1290, arXiv: 1603.01790

[24] A. I. Sokolov, E. V. Orlov, V. A. Ul'kov, S. S. Kashtanov, “Universal critical coupling constants for the three-dimensional n-vector model from field theory”, Phys. Rev. E, 60:2 (1999), 1344–1349, arXiv: hep-th/9810082 | DOI

[25] A. Pelissetto, E. Vicari, “The effective potential of $N$-vector models: a field-theoretic study to $O(\epsilon^3)$”, Nucl. Phys. B, 575:3 (2000), 579–598, arXiv: cond-mat/9911452 | DOI | MR

[26] J. Zinn-Justin, Phys. Rep., 344:4–6 (2001), 159–178, arXiv: hep-th/0002136 | DOI | MR | Zbl

[27] M. Caselle, M. Hasenbusch, A. Pelissetto, E. Vicari, “The critical equation of state of the two-dimensional Ising model”, J. Phys. A: Math. Gen., 34:14 (2001), 2923–2948, arXiv: cond-mat/0011305 | DOI | MR | Zbl

[28] M. Campostrini, A. Pelissetto, P. Rossi, E. Vicari, “25th-order high-temperature expansion results for three-dimensional Ising-like systems on the simple-cubic lattice”, Phys. Rev. E, 65:6 (2002), 066127, 19 pp., arXiv: cond-mat/0201180 | DOI | MR

[29] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, International Series of Monographs on Physics, 85, Clarendon Press, Oxford, 2002 | MR

[30] A. Pelissetto, E. Vicari, “Critical phenomena and renormalization-group theory”, Phys. Rep., 368:6 (2002), 549–727, arXiv: cond-mat/0012164 | DOI | MR | Zbl

[31] P. Butera, M. Pernici, “The free energy in a magnetic field and the universal scaling equation of state for the three-dimensional Ising model”, Phys. Rev. B, 83:5 (2011), 054433, arXiv: 1012.5004 | DOI

[32] A. I. Sokolov, M. A. Nikitina, “Pseudo-$\epsilon$ expansion and renormalized coupling constants at criticality”, Phys. Rev. E, 89:5 (2014), 052127, 10 pp., arXiv: 1402.3531 | DOI

[33] D. V. Pakhnin, A. I. Sokolov, “Five-loop renormalization-group expansions for the three-dimensional $\boldsymbol{n}$-vector cubic model and critical exponents for impure Ising systems”, Phys. Rev. B, 61:22 (2000), 15130–15135, arXiv: cond-mat/9912071 | DOI

[34] J. M. Carmona, A. Pelissetto, E. Vicari, “$N$-component Ginzburg–Landau Hamiltonian with cubic anisotropy: a six-loop study”, Phys. Rev. B, 61:22 (2000), 15136–15151, arXiv: cond-mat/9912115 | DOI

[35] R. Folk, Yu. Holovatch, T. Yavors'kii, “Pseudo-$\varepsilon$ expansion of six-loop renormalization-group functions of an anisotropic cubic model”, Phys. Rev. B, 62:18 (2000), 12195–12200, arXiv: cond-mat/0003216 | DOI

[36] Yu. Holovatch, D. Ivaneiko, B. Delamotte, “On the criticality of frustrated spin systems with noncollinear order”, J. Phys. A: Math. Gen., 37:11 (2004), 3569–3575, arXiv: cond-mat/0312260 | DOI | MR | Zbl

[37] P. Calabrese, P. Parruccini, “Harmonic crossover exponents in $O(n)$ models with the pseudo-$\varepsilon$ expansion approach”, Phys. Rev. B, 71:6 (2005), 064416, 8 pp., arXiv: cond-mat/0411027 | DOI

[38] P. Calabrese, E. V. Orlov, D. V. Pakhnin, A. I. Sokolov, “Critical behavior of two-dimensional cubic and $MN$ models in the five-loop renormalization group approximation”, Phys. Rev. B, 70:9 (2004), 094425, 15 pp., arXiv: cond-mat/0405432 | DOI | MR

[39] A. I. Sokolov, “Psevdo-$\varepsilon$-razlozhenie i dvumernaya model Izinga”, FTT, 47:11 (2005), 2056–2059, arXiv: cond-mat/0510088

[40] A. I. Sokolov, “Fazovye perekhody v dvumernykh sistemakh i mnogopetlevye renormgruppovye razlozheniya”, TMF, 176:1 (2013), 140–149 | DOI | DOI | MR | Zbl

[41] M. A. Nikitina, A. I. Sokolov, “Critical exponents in two dimensions and pseudo-$\varepsilon$ expansion”, Phys. Rev. E, 89:4 (2014), 042146, 6 pp., arXiv: 1312.1062 | DOI

[42] A. I. Sokolov, M. A. Nikitina, “Fisher exponent from pseudo-$\varepsilon$ expansion”, Phys. Rev. E, 90:1 (2014), 012102, 5 pp., arXiv: 1402.3894 | DOI | MR

[43] M. A. Nikitina, A. I. Sokolov, “Kriticheskie indeksy i psevdo-$\epsilon$-razlozhenie”, TMF, 186:2 (2016), 230–242, arXiv: 1602.08681 | DOI | DOI | Zbl

[44] A. I. Sokolov, M. A. Nikitina, “Pseudo-$\varepsilon$ expansion and critical exponents of superfluid helium”, Phys. A, 444 (2016), 177–181, arXiv: 1402.4318 | DOI

[45] B. G. Nickel, D. I. Meiron, G. A. Baker, “Compilation of 2-pt and 4-pt graphs for conti nuous models”, University of Guelph Report, 1977 (unpublished)