Form factors in the $\mathcal{N}=4$ maximally supersymmetric Yang–Mills theory, soft theorems, and integrability
Teoretičeskaâ i matematičeskaâ fizika, Tome 190 (2017) no. 3, pp. 391-402 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We discuss the universal soft behavior of form factors in the $\mathcal N=4$ maximally supersymmetric Yang–Mills theory in the limit where the momentum of one of the particles tends to zero. We present details of how the tree-level form factors of this theory are related to eigenfunctions of a $\mathfrak{gl}(4|4)$ integrable spin chain.
Keywords: $\mathcal N=4$ supersymmetric Yang–Mills theory, form factor, integrability, soft theorem.
Mots-clés : amplitude
@article{TMF_2017_190_3_a1,
     author = {L. V. Bork and A. I. Onischenko},
     title = {Form factors in the~$\mathcal{N}=4$ maximally supersymmetric {Yang{\textendash}Mills} theory, soft theorems, and integrability},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {391--402},
     year = {2017},
     volume = {190},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_190_3_a1/}
}
TY  - JOUR
AU  - L. V. Bork
AU  - A. I. Onischenko
TI  - Form factors in the $\mathcal{N}=4$ maximally supersymmetric Yang–Mills theory, soft theorems, and integrability
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 391
EP  - 402
VL  - 190
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_190_3_a1/
LA  - ru
ID  - TMF_2017_190_3_a1
ER  - 
%0 Journal Article
%A L. V. Bork
%A A. I. Onischenko
%T Form factors in the $\mathcal{N}=4$ maximally supersymmetric Yang–Mills theory, soft theorems, and integrability
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 391-402
%V 190
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2017_190_3_a1/
%G ru
%F TMF_2017_190_3_a1
L. V. Bork; A. I. Onischenko. Form factors in the $\mathcal{N}=4$ maximally supersymmetric Yang–Mills theory, soft theorems, and integrability. Teoretičeskaâ i matematičeskaâ fizika, Tome 190 (2017) no. 3, pp. 391-402. http://geodesic.mathdoc.fr/item/TMF_2017_190_3_a1/

[1] R. Britto, “Loop amplitudes in gauge theories: modern analytic approaches”, J. Phys. A: Math. Theor., 44:45 (2011), 454006, 28 pp., arXiv: ; Z. Bern, Y.-t. Huang, “Basics of generalized unitarity”, J. Phys. A: Math. Theor., 44:45 (2011), 454003, 32 pp., arXiv: ; L. J. Dixon, A brief introduction to modern amplitude methods, arXiv: ; H. Elvang, Y.-t. Huang, Scattering amplitudes, arXiv: ; J. M. Henn, J. C. Plefka, Scattering Amplitudes in Gauge Theories, Lecture Notes in Physics, 883, Springer, Berlin, 2014 ; N. Beisert, C. Ahn, L. F. Alday et al., “Review of AdS/CFT integrability: an overview”, Lett. Math. Phys., 99:1 (2012), 3–32, arXiv: 1012.44931103.18691310.53531308.16971012.3982 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR

[2] D. Chicherin, S. Derkachov, R. Kirschner, “Yang–Baxter operators and scattering amplitudes in $\mathcal N=4$ super-Yang–Mills theory”, Nucl. Phys. B, 881 (2014), 467–501, arXiv: 1309.5748 | DOI | MR | Zbl

[3] R. Frassek, N. Kanning, Y. Ko, M. Staudacher, “Bethe ansatz for Yangian invariants: towards super Yang–Mills scattering amplitudes”, Nucl. Phys. B, 883 (2014), 373–424, arXiv: 1312.1693 | DOI | MR | Zbl

[4] N. Kanning, T. Lukowski, M. Staudacher, “A shortcut to general tree-level scattering amplitudes in $\mathcal N=4$ SYM via integrability”, Fortsch. Phys., 62:7 (2014), 556–572, arXiv: 1403.3382 | DOI | MR | Zbl

[5] J. Broedel, M. de Leeuw, M. Rosso, “A dictionary between R-operators, on-shell graphs and Yangian algebras”, JHEP, 06 (2014), 170, 47 pp., arXiv: 1403.3670 | DOI | MR

[6] F. Gliozzi, J. Scherk, D. I. Olive, “Supersymmetry, supergravity theories and the dual spinor model”, Nucl. Phys. B, 122:2 (1977), 253–290 | DOI | MR

[7] L. Brink, J. H. Schwarz, J. Scherk, “Supersymmetric Yang–Mills theories”, Nucl. Phys. B, 121:1 (1977), 77–92 | DOI | MR

[8] V. P. Nair, “A current algebra for some gauge theory amplitudes”, Phys. Lett. B, 214:2 (1988), 215–218 | DOI

[9] J. M. Drummond, J. Henn, G. P. Korchemsky, E. Sokatchev, “Dual superconformal symmetry of scattering amplitudes in $\mathcal N=4$ super-Yang–Mills theory”, Nucl. Phys. B, 828:1–2 (2010), 317–374, arXiv: 0807.1095 | DOI | MR | Zbl

[10] H. Elvang, Y.-t. Huang, Scattering amplitudes, arXiv: 1308.1697

[11] S. J. Parke, T. R. Taylor, “An amplitude for $n$ gluon scattering”, Phys. Rev. Lett., 56:23 (1986), 2459–2460 | DOI

[12] A. Brandhuber, B. Spence, G. Travaglini, G. Yang, “Form factors in $\mathcal{N}=4$ super Yang–Mills and periodic Wilson loops”, JHEP, 01 (2011), 134, 22 pp., arXiv: 1011.1899 | DOI | MR

[13] L. V. Bork, D. I. Kazakov, G. S. Vartanov, “On form factors in $\mathcal N=4$ SYM”, JHEP, 02 (2011), 063, 34 pp., arXiv: 1011.2440 | DOI | MR

[14] A. Brandhuber, Ö. Gürdoğan, R. Mooney, G. Travaglini, G. Yang, “Harmony of super form factors”, JHEP, 10 (2011), 046, 37 pp., arXiv: 1107.5067 | DOI | MR | Zbl

[15] L. V. Bork, D. I. Kazakov, G. S. Vartanov, “On MHV form factors in superspace for $\mathcal N=4$ SYM theory”, JHEP, 10 (2011), 133, 33 pp., arXiv: 1107.5551 | DOI | MR | Zbl

[16] L. V. Bork, “On NMHV form factors in $\mathcal N=4$ SYM theory from generalized unitarity”, JHEP, 01 (2013), 049, 37 pp., arXiv: 1203.2596 | DOI | MR

[17] B. Penante, B. Spence, G. Travaglini, C. Wen, On super form factors of half-BPS operators in $\mathcal N=4$ SYM, arXiv: 1402.1300

[18] A. Brandhuber, G. Travaglini, G. Yang, “Analytic two-loop form factors in $\mathcal N=4$ SYM”, JHEP, 05 (2012), 082, 32 pp., arXiv: 1201.4170 | DOI | MR

[19] A. Brandhuber, B. Penante, G. Travaglini, C. Wen, “The last of the simple remainders”, JHEP, 08 (2014), 100, 32 pp., arXiv: 1406.1443 | DOI

[20] L. V. Bork, “On form factors in $\mathcal N=4$ SYM theory and polytopes”, JHEP, 12 (2014), 111, 40 pp., arXiv: 1407.5568 | DOI

[21] J. M. Henn, S. Moch, S. G. Naculich, “Form factors and scattering amplitudes in $\mathcal N=4$ SYM in dimensional and massive regularizations”, JHEP, 12 (2011), 024, 29 pp., arXiv: 1109.5057 | DOI | MR | Zbl

[22] T. Gehrmann, J. M. Henn, T. Huber, “The three-loop form factor in $\mathcal N=4$ super Yang–Mills”, JHEP, 03 (2012), 101, arXiv: 1112.4524 | DOI | MR

[23] R. H. Boels, B. A. Kniehl, O. V. Tarasov, G. Yang, “Color-kinematic duality for form factors”, JHEP, 02 (2013), 063, 35 pp., arXiv: 1211.7028 | DOI | MR

[24] J. Maldacena, A. Zhiboedov, “Form factors at strong coupling via a $Y$-system”, JHEP, 11 (2010), 104, 41 pp., arXiv: 1009.1139 | DOI | MR | Zbl

[25] Z. Gao, G. Yang, “Y-system for form factors at strong coupling in AdS$_5$ and with multi-operator insertions in AdS$_3$”, JHEP, 06 (2013), 105, 49 pp., arXiv: 1303.2668 | DOI | MR

[26] M. Wilhelm, “Amplitudes, form factors and the dilatation operator in $\mathcal N=4$ SYM theory”, JHEP, 02 (2015), 149, 38 pp., arXiv: 1410.6309 | DOI | MR

[27] D. Nandan, C. Sieg, M. Wilhelm, G. Yang, “Cutting through form factors and cross sections of non-protected operators in $\mathcal N=4$ SYM”, JHEP, 06 (2015), 156, 68 pp., arXiv: 1410.8485 | DOI | MR

[28] F. Loebbert, D. Nandan, C. Sieg, M. Wilhelm, G. Yang, “On-shell methods for the two-loop dilatation operator and finite remainders”, JHEP, 10 (2015), 012, 23 pp., arXiv: 1504.06323 | DOI | MR

[29] L. V. Bork, A. I. Onishchenko, “On soft theorems and form factors in $\mathcal N=4$ SYM theory”, JHEP, 12 (2015), 030, 48 pp., arXiv: 1506.07551 | DOI | MR

[30] R. Frassek, D. Meidinger, D. Nandan, M. Wilhelm, “On-shell diagrams, Graßmannians and integrability for form factors”, JHEP, 01 (2016), 182, 46 pp., arXiv: 1506.08192 | DOI | MR

[31] R. Boels, B. A. Kniehl, G. Yang, “Master integrals for the four-loop Sudakov form factor”, Nucl. Phys. B, 902 (2016), 387–414, arXiv: 1508.03717 | DOI | MR | Zbl

[32] R. Britto, F. Cachazo, B. Feng, “New recursion relations for tree amplitudes of gluons”, Nucl. Phys. B, 715:1–2 (2005), 499–522, arXiv: hep-th/0412308 | DOI | MR | Zbl

[33] R. Britto, F. Cachazo, B. Feng, E. Witten, “Direct proof of tree-level recursion relation in Yang–Mills theory”, Phys. Rev. Lett., 94:18 (2005), 181602, 4 pp., arXiv: hep-th/0501052 | DOI | MR

[34] S. Weinberg, “Infrared photons and gravitons”, Phys. Rev. B, 140:2B (1965), B516–B524 | DOI | MR

[35] A. Strominger, “On BMS invariance of gravitational scattering”, JHEP, 07 (2014), 152, 20 pp., arXiv: 1312.2229 | DOI

[36] T. He, V. Lysov, P. Mitra, A. Strominger, “BMS supertranslations and Weinberg's soft graviton theorem”, JHEP, 05 (2015), 151, 16 pp., arXiv: 1401.7026 | DOI | MR

[37] F. Cachazo, A. Strominger, Evidence for a new soft graviton theorem, arXiv: 1404.4091

[38] A. Strominger, A. Zhiboedov, “Gravitational memory, BMS supertranslations and soft theorems”, JHEP, 01 (2016), 086, 14 pp., arXiv: 1411.5745 | DOI | MR

[39] S. Pasterski, A. Strominger, A. Zhiboedov, New gravitational memories, arXiv: 1502.06120 | MR

[40] A. Strominger, “Asymptotic symmetries of Yang–Mills theory”, JHEP, 07 (2014), 151, 17 pp., arXiv: 1308.0589 | DOI | MR

[41] T. He, P. Mitra, A. Strominger, “2D Kac–Moody symmetry of 4D Yang–Mills theory”, JHEP, 10 (2016), 137, 19 pp., arXiv: 1503.02663 | DOI | MR

[42] T. T. Dumitrescu, T. He, P. Mitra, A. Strominger, Infinite-dimensional fermionic symmetry in supersymmetric gauge theories, arXiv: 1511.07429

[43] Y. Geyer, A. E. Lipstein, L. Mason, “Ambitwistor strings at null infinity and (subleading) soft limits”, Class. Quantum Grav., 32:5 (2015), 055003, 28 pp., arXiv: 1406.1462 | DOI | MR | Zbl

[44] A. E. Lipstein, “Soft theorems from conformal field theory”, JHEP, 06 (2015), 166, 26 pp., arXiv: 1504.01364 | DOI | MR

[45] E. Laenen, G. Stavenga, C. D. White, “Path integral approach to eikonal and next-to-eikonal exponentiation”, JHEP, 03 (2009), 054, 45 pp., arXiv: ; E. Laenen, L. Magnea, G. Stavenga, C. D. White, “Next-to-eikonal corrections to soft gluon radiation: a diagrammatic approach”, JHEP, 01 (2011), 141, 67 pp., arXiv: 0811.20671010.1860 | DOI | DOI

[46] E. Casali, “Soft sub-leading divergences in Yang–Mills amplitudes”, JHEP, 08 (2014), 077, 4 pp., arXiv: 1404.5551 | DOI

[47] Z. Bern, S. Davies, J. Nohle, “On loop corrections to subleading soft behaviour of gluons and gravitons”, Phys. Rev. D, 90:8 (2014), 085015, 10 pp., arXiv: 1405.1015 | DOI | MR

[48] F. Cachazo, E. Ye Yuan, Are soft theorems renormlised?, arXiv: 1405.3413

[49] A. Brandhuber, E. Hughes, B. Spence, G. Travaglini, “One-loop soft theorems via dual superconformal symmetry”, JHEP, 03 (2016), 084, 44 pp., arXiv: 1511.06716 | DOI

[50] N. Arkani-Hamed, F. Cachazo, C. Cheung, J. Kaplan, “A duality for the $\mathrm S$ matrix”, JHEP, 03 (2010), 020, 69 pp., arXiv: 0907.5418 | DOI | MR

[51] M. Bullimore, “Inverse soft factors and grassmannian residues”, JHEP, 01 (2011), 055, 30 pp., arXiv: 1008.3110 | DOI | MR

[52] D. Nandan, C. Wen, “Generating all tree amplitudes in $\mathcal N=4$ SYM by inverse soft limit”, JHEP, 08 (2012), 040, 29 pp., arXiv: 1204.4841 | DOI | MR

[53] C. Boucher-Veronneau, A. J. Larkoski, “Constructing amplitudes from their soft limits”, JHEP, 09 (2011), 130, 22 pp., arXiv: 1108.5385 | DOI

[54] N. Arkani-Hamed, J. L. Bourjaily, F. Cachazo, A. B. Goncharov, A. Postnikov, J. Trnka, Scattering amplitudes and the positive Grassmannian, arXiv: 1212.5605

[55] L. J. Mason, D. Skinner, “Dual superconformal invariance, momentum twistors and Grassmannians”, JHEP, 11 (2009), 045, 39 pp., arXiv: 0909.0250 | DOI | MR

[56] N. Arkani-Hamed, J. L. Bourjaily, F. Cachazo, S. Caron-Huot, J. Trnka, “The all-loop integrand for scattering amplitudes in planar $\mathcal N=4$ SYM”, JHEP, 01 (2011), 041, 46 pp., arXiv: 1008.2958 | DOI | MR

[57] N. Arkani-Hamed, J. L. Bourjaily, F. Cachazo, J. Trnka, “Unification of residues and Grassmannian dualities”, JHEP, 01 (2011), 049, 45 pp., arXiv: 0912.4912 | DOI | MR

[58] J. M. Drummond, J. M. Henn, J. Plefka, “Yangian symmetry of scattering amplitudes in $\mathcal N=4$ super Yang–Mills theory”, JHEP, 05 (2009), 046, 23 pp., arXiv: 0902.2987 | DOI | MR