Directed-bond percolation subjected to synthetic compressible velocity fluctuations: Renormalization group approach
Teoretičeskaâ i matematičeskaâ fizika, Tome 190 (2017) no. 3, pp. 377-390 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the directed-bond percolation process (sometimes called the Gribov process because it formally resembles Reggeon field theory) in the presence of irrotational velocity fluctuations with long-range correlations. We use the renormalization group method to investigate the phase transition between an active and an absorbing state. All calculations are in the one-loop approximation. We calculate stable fixed points of the renormalization group and their regions of stability in the form of expansions in three parameters $(\varepsilon,y,\eta)$. We consider different regimes corresponding to the Kraichnan rapid-change model and a frozen velocity field.
Keywords: nonequilibrium critical behaviour, Gribov process, percolation, renormalization group.
@article{TMF_2017_190_3_a0,
     author = {N. V. Antonov and M. Gnatich and A. S. Kapustin and T. Lu\v{c}ivjansk\'y and L. Mi\v{z}i\v{s}in},
     title = {Directed-bond percolation subjected to synthetic compressible velocity fluctuations: {Renormalization} group approach},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {377--390},
     year = {2017},
     volume = {190},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_190_3_a0/}
}
TY  - JOUR
AU  - N. V. Antonov
AU  - M. Gnatich
AU  - A. S. Kapustin
AU  - T. Lučivjanský
AU  - L. Mižišin
TI  - Directed-bond percolation subjected to synthetic compressible velocity fluctuations: Renormalization group approach
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 377
EP  - 390
VL  - 190
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_190_3_a0/
LA  - ru
ID  - TMF_2017_190_3_a0
ER  - 
%0 Journal Article
%A N. V. Antonov
%A M. Gnatich
%A A. S. Kapustin
%A T. Lučivjanský
%A L. Mižišin
%T Directed-bond percolation subjected to synthetic compressible velocity fluctuations: Renormalization group approach
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 377-390
%V 190
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2017_190_3_a0/
%G ru
%F TMF_2017_190_3_a0
N. V. Antonov; M. Gnatich; A. S. Kapustin; T. Lučivjanský; L. Mižišin. Directed-bond percolation subjected to synthetic compressible velocity fluctuations: Renormalization group approach. Teoretičeskaâ i matematičeskaâ fizika, Tome 190 (2017) no. 3, pp. 377-390. http://geodesic.mathdoc.fr/item/TMF_2017_190_3_a0/

[1] H. Hinrichsen, “Non-equilibrium phase transitions”, Phys. A, 369:1 (2006), 1–28 | DOI | MR

[2] D. Stauffer, A. Aharony, Introduction to Percolation Theory, Taylor and Francis, London, 1992 | MR | Zbl

[3] M. Henkel, H. Hinrichsen, S. Lübeck, Non-Equilibrium Phase Transitions, v. 1, Absorbing Phase Transitions, Springer, Dordrecht, 2008 | MR | Zbl

[4] F. Schlögl, “Chemical reaction models for non-equilibrium phase transitions”, Z. Phys., 253:2 (1972), 147–161 | DOI | MR

[5] P. Grassberger, “On phase transitions in Schlögl's second model”, Z. Phys. B, 47:4 (1982), 365–372 | DOI | MR

[6] V. N. Gribov, “Redzheonnaya diagrammnaya tekhnika”, ZhETF, 53:2 (1968), 654–672

[7] J. L. Cardy, R. L. Sugar, “Directed percolation and Reggeon field theory”, J. Phys. A, 13:12 (1980), L423–L427 | DOI | MR

[8] H. Hinrichsen, “Non-equilibrium phase transitions with long-range interactions”, J. Stat. Mech., 2007:7 (2007), P07006, 35 pp. | DOI | MR

[9] H. K. Janssen, “On the nonequilibrium phase transition in reaction-diffusion systems with an absorbing stationary state”, Z. Phys. B, 42:2 (1981), 151–154 | DOI | MR

[10] H. K. Janssen, “Renormalized field theory of the Gribov process with quenched disorder”, Phys. Rev. E, 55:5 (1997), 6253–6256 | DOI

[11] P. Rupp, R. Richter, I. Rehberg, “Critical exponents of directed percolation measured in spatiotemporal intermittency”, Phys. Rev. E, 67:3 (2003), 036209, 7 pp. | DOI | MR

[12] K. A. Takeuchi, M. Kuroda, H. Chaté, M. Sano, “Directed percolation criticality in turbulent liquid crystals”, Phys. Rev. Lett., 99:23 (2007), 234503, 4 pp. | DOI

[13] G. Falkovich, K. Gawȩdzki, M. Vergassola, Rev. Modern Phys., 73:4 (2001), 913–975 | DOI | MR | Zbl

[14] L. D. Landau, E. M. Lifshits, Kurs teoreticheskoi fiziki, v. 6, Gidrodinamika, Nauka, M., 1986 | MR | Zbl

[15] U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[16] A. S. Monin, A. M. Yaglom, Statisticheskaya gidromekhanika. Ch. 2. Mekhanika turbulentnosti, Nauka, M., 1967 | MR | Zbl

[17] N. V. Antonov, “Anomalous scaling regimes of a passive scalar advected by the synthetic velocity field”, Phys. Rev. E, 60:6 (1999), 6691–6707 | DOI | MR | Zbl

[18] R. Benzi, D. R. Nelson, “Fisher equation with turbulence in one dimension”, Phys. D, 238:19 (2009), 2003–2015 | DOI | MR | Zbl

[19] S. Pigolotti, R. Benzi, M. H. Jensen, D. R. Nelson, “Population genetics in compressible flows”, Phys. Rev. Lett., 108:12 (2012), 128102, 5 pp. | DOI

[20] R. Volk, C. Mauger, M. Bourgoin, C. Cottin-Bizonne, C. Ybert, F. Raynal, “Chaotic mixing in effective compressible flows”, Phys. Rev. E, 90:1 (2014), 013027, 5 pp. | DOI

[21] M. De Pietro, M. A. T. van Hinsberg, L. Biferale, H. J. H. Clercx, P. Perlekar, F. Toschi, “Clustering of vertically constrained passive particles in homogeneous isotropic turbulence”, Phys. Rev. E, 91:5 (2015), 053002, 7 pp. | DOI

[22] N. V. Antonov, “Anomalous scaling of a passive scalar advected by the synthetic compressible flow”, Phys. D, 144:3–4 (2000), 370–386 | DOI | MR | Zbl

[23] N. V. Antonov, V. I. Iglovikov, A. S. Kapustin, “Effects of turbulent mixing on the nonequilibrium critical behaviour”, J. Phys. A, 42:13 (2008), 135001, 19 pp. | DOI | MR

[24] N. V. Antonov, A. S. Kapustin, “Effects of turbulent mixing on critical behaviour in the presence of compressibility: renormalization group analysis of two models”, J. Phys. A: Math. Theor., 43:40 (2010), 405001, 22 pp. | DOI | MR | Zbl

[25] N. V. Antonov, A. S. Kapustin, A. V. Malyshev, “Vliyanie turbulentnogo perenosa na kriticheskoe povedenie”, TMF, 169:1 (2011), 124–136 | DOI | DOI | Zbl

[26] M. Dancho, M. Gnatich, T. Luchivyanski, L. Mizhishin, “Kriticheskoe povedenie protsessa perkolyatsii pod vliyaniem sluchainogo polya skorostei: odnopetlevoe priblizhenie”, TMF, 176:1 (2013), 79–88 | DOI | DOI | MR | Zbl

[27] A. N. Vasilev, Kvantovopolevaya renormgruppa v teorii kriticheskogo povedeniya i stokhasticheskoi dinamike, Izd-vo PIYaF, SPb., 1998 | MR

[28] H.-K. Janssen, U. C. Täuber, “The field theory approach to percolation processes”, Ann. Phys., 315:1 (2004), 147–192, arXiv: cond-mat/0409670 | DOI | MR | Zbl

[29] M. Doi, “Second quantization representation for classical many-particle system”, J. Phys. A: Math. Gen., 9:9 (1976), 1465–1478 | DOI

[30] H. K. Janssen, “On a Lagrangean for classical field dynamics and renormalization group calculations of dynamical critical properties”, Z. Phys. B, 23:4 (1976), 377–380 | DOI

[31] C. De Dominicis, “Techniques de renormalisation de la théorie des champs et dynamique des phénomènes critiques”, J. Phys. Colloques France, 37:C1 (1976), C1-247–C1-254 | DOI | MR

[32] H. K. Janssen, Dynamical Critical Phenomena and Related Topics (University of Geneva, Geneva, April 2–6, 1979), v. 104, Lecture Notes in Physics, Springer, Berlin, 1979 | MR

[33] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, Oxford Univ. Press, Oxford, 2002 | DOI | MR

[34] L. Ts. Adzhemyan, N. V. Antonov, “Renormalization group and anomalous scaling in a simple model of passive scalar advection in compressible flow”, Phys. Rev. E, 58:6 (1998), 7381–7396 | DOI | MR

[35] D. J. Amit, V. Martín-Mayor, Field Theory, the Renormalization Group, and Critical Phenomena, World Sci., Singapore, 2005 | MR

[36] U. C. Täuber, Critical Dynamics: A Field Theory Approach to Equilibrium and Non-Equilibrium Scaling Behavior, Cambridge Univ. Press, Cambridge, 2014

[37] L. Ts. Adzhemyan, N. V. Antonov, T. L. Kim, “Sostavnye operatory, operatornoe razlozhenie i galileeva invariantnost v teorii razvitoi turbulentnosti. Infrakrasnye popravki k kolmogorovskomu skeilingu”, TMF, 100:3 (1994), 382–401 | DOI | MR | Zbl

[38] N. V. Antonov, S. V. Borisenok, V. I. Girina, “Renormalizatsionnaya gruppa v teorii razvitoi turbulentnosti. Sostavnye operatory kanonicheskoi razmernosti vosem”, TMF, 106:1 (1996), 92–101 | DOI | DOI | MR | Zbl

[39] N. V. Antonov, A. N. Vasilev, “Renormalizatsionnaya gruppa v teorii razvitoi turbulentnosti. Problema obosnovaniya gipotez Kolmogorova dlya sostavnykh operatorov”, TMF, 110:1 (1997), 122–136 | DOI | DOI | MR | Zbl

[40] D. Forster, D. R. Nelson, M. J. Stephen, “Large-distance and long-time properties of a randomly stirred fluid”, Phys. Rev. A, 16:2 (1977), 732–749 | DOI | MR

[41] M. Hnatich, J. Honkonen, “Velocity-fluctuation-induced anomalous kinetics of the $A+\vec{A}\varnothing$ reaction”, Phys. Rev. E, 61:4 (2000), 3904–3911 | DOI | MR

[42] J. Honkonen, E. Karjalainen, “Diffusion in a random medium with long-range correlations”, J. Phys. A: Math. Gen., 21:22 (1988), 4217–4234 | DOI | MR

[43] K. Gaw{ȩ}dzki, M. Vergassola, “Phase transition in the passive scalar advection”, Phys. D, 138:1–2 (1999), 63–90 | DOI | MR