Mots-clés : pseudo-$\epsilon$-expansion.
@article{TMF_2017_190_2_a9,
author = {A. Kudlis and A. I. Sokolov},
title = {Field theory and anisotropy of a~cubic ferromagnet near {the~Curie} point},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {344--353},
year = {2017},
volume = {190},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2017_190_2_a9/}
}
A. Kudlis; A. I. Sokolov. Field theory and anisotropy of a cubic ferromagnet near the Curie point. Teoretičeskaâ i matematičeskaâ fizika, Tome 190 (2017) no. 2, pp. 344-353. http://geodesic.mathdoc.fr/item/TMF_2017_190_2_a9/
[1] K. G. Wilson, M. E. Fisher, “Critical exponents in 3.99 dimensions”, Phys. Rev. Lett., 28:4 (1972), 240–243 | DOI
[2] D. J. Wallace, “Critical behaviour of anisotropic cubic systems”, J. Phys. C, 6:8 (1973), 1390–1404 | DOI
[3] I. J. Ketley, D. J. Wallace, “A modified epsilon expansion for a Hamiltonian with cubic point-group symmetry”, J. Phys. A: Math. Gen., 6:11 (1973), 1667–1678 | DOI
[4] I. F. Lyuksyutov, V. L. Pokrovskii, “Fazovye perekhody pervogo roda v sistemakh s kubicheskoi anizotropiei”, Pisma v ZhETF, 21:1 (1975), 22–25
[5] A. Aharony, “Critical behavior of anisotropic cubic systems”, Phys. Rev. B, 8:9 (1973), 4270–4273 | DOI
[6] A. I. Sokolov, “O fazovom perekhode v trekhmernoi modeli. Vliyanie kubicheskoi anizotropii”, FTT, 19:3 (1977), 747–755 | MR
[7] K. E. Newman, E. K. Riedel, “Cubic $N$-vector model and randomly dilute Ising model in general dimensions”, Phys. Rev. B, 25:1 (1982), 264–280 ; Erratum, 30:5, 2924–2924 | DOI | DOI
[8] M. Ferer, J. P. Van Dyke, W. J. Camp, “Effect of a cubic crystal field on the critical behavior of a 3D model with Heisenberg exchange coupling: a high-temperature series investigation”, Phys. Rev. B, 23:5 (1981), 2367–2373 | DOI
[9] M. Tissier, D. Mouhanna, J. Vidal, B. Delamotte, “Randomly dilute Ising model: A nonperturbative approach”, Phys. Rev. B, 65:14 (2002), 140402, 4 pp., arXiv: cond-mat/0109176 | DOI
[10] I. O. Maier, A. I. Sokolov, “O kriticheskom povedenii kubicheskikh kristallov pri strukturnykh fazovykh perekhodakh”, Izv. AN SSSR. Ser. fiz., 51:12 (1987), 2103–2106; I. O. Maier, A. I. Sokolov, “Is a cubic crystal “isotropic” in the critical point?”, Ferroelectrics Lett. Sect., 9:4 (1988), 95–98 | DOI
[11] N. A. Shpot, “Critical behavior of the $mn$-component field model in three dimensions II. Three-loop results”, Phys. Lett. A, 142:8–9 (1989), 474–478 | DOI | MR
[12] I. O. Mayer, A. I. Sokolov, B. N. Shalaev, “Critical exponents for cubic and impure uniaxial crystals: most accurate (?) theoretical values”, Ferroelectrics, 95 (1989), 93–96 | DOI
[13] D. V. Pakhnin, A. I. Sokolov, “Five-loop renormalization-group expansions for the three-dimensional $n$-vector cubic model and critical exponents for impure Ising systems”, Phys. Rev. B, 61:22 (2000), 15130–15135, arXiv: cond-mat/9912071 | DOI
[14] J. M. Carmona, A. Pelissetto, E. Vicari, “$N$-component Ginzburg–Landau Hamiltonian with cubic anisotropy: a six-loop study”, Phys. Rev. B, 61:22 (2000), 15136–15151, arXiv: cond-mat/9912115 | DOI
[15] H. Kleinert, V. Schulte-Frohlinde, “Exact five-loop renormalization group functions of $\phi^4$-theory with $O(N)$-symmetric and cubic interactions. Critical exponents up to $\varepsilon^5$”, Phys. Lett. B, 342:1–4 (1995), 284–296, arXiv: cond-mat/9503038 | DOI
[16] H. Kleinert, S. Thoms, “Large-order behavior of a two-coupling-constant $\varphi^4$ theory with cubic anisotropy”, Phys. Rev. D, 52:10 (1995), 5926–5943, arXiv: hep-th/9508172 | DOI
[17] H. Kleinert, S. Thoms, V. Schulte-Frohlinde, “Stability of a three-dimensional cubic fixed point in the two-coupling-constant $\varphi^4$ theory”, Phys. Rev. B, 56:22 (1997), 14428–14434, arXiv: quant-ph/9611050 | DOI
[18] B. N. Shalaev, S. A. Antonenko, A. I. Sokolov, “Five-loop $\sqrt{\varepsilon}$-expansion for random Ising model and marginal spin dimensionality for cubic systems”, Phys. Lett. A, 230:1–2 (1997), 105–110, arXiv: cond-mat/9803388 | DOI
[19] R. Folk, Yu. Holovatch, T. Yavors'kii, “Effective and asymptotic critical exponents of a weakly diluted quenched Ising model: Three-dimensional approach versus $\sqrt{\varepsilon}$ expansion”, Phys. Rev. B, 61:22 (2000), 15114–15129, arXiv: cond-mat/9909121 | DOI
[20] R. Folk, Yu. Holovatch, T. Yavors'kii, “Pseudo-$\varepsilon$ expansion of six-loop renormalization-group functions of an anisotropic cubic model”, Phys. Rev. B, 62:18 (2000), 12195–12200, arXiv: ; Erratum, 63:18, 189901 cond-mat/0003216 | DOI | DOI
[21] K. B. Varnashev, “Stability of a cubic fixed point in three dimensions: Critical exponents for generic $N$”, Phys. Rev. B, 61:21 (2000), 14660–14674, arXiv: cond-mat/9909087 | DOI
[22] A. Pelissetto, E. Vicari, “Critical phenomena and renormalization-group theory”, Phys. Rep., 368:6 (2002), 549–727, arXiv: cond-mat/0012164 | DOI | MR | Zbl
[23] R. Guida, J. Zinn–Justin, “Critical exponents of the $N$-vector model”, J. Phys. A: Math. Gen., 31:40 (1998), 8103–8121, arXiv: cond-mat/9803240 | DOI | MR | Zbl
[24] D. V. Pakhnin, A. I. Sokolov, “Renormalization group and nonlinear susceptibilities of cubic ferromagnets at criticality”, Phys. Rev. B, 64:9 (2001), 094407, 6 pp., arXiv: cond-mat/0102368 | DOI
[25] J. C. Le Guillou, J. Zinn-Justin, “Critical exponents from field theory”, Phys. Rev. B, 21:9 (1980), 3976–3998 | DOI | MR | Zbl
[26] Yu. Holovatch, D. Ivaneiko, B. Delamotte, “On the criticality of frustrated spin systems with noncollinear order”, J. Phys. A: Math. Gen., 37:11 (2004), 3569–3575, arXiv: cond-mat/0312260 | DOI | MR | Zbl
[27] A. I. Sokolov, M. A. Nikitina, “Pseudo-$\varepsilon$ expansion and renormalized coupling constants at criticality”, Phys. Rev. E, 89:5 (2014), 052127, 10 pp., arXiv: 1402.3531 | DOI
[28] A. I. Sokolov, M. A. Nikitina, “Fisher exponent from pseudo-$\varepsilon$ expansion”, Phys. Rev. E, 90:1 (2014), 012102, 5 pp., arXiv: 1402.3894 | DOI | MR
[29] M. A. Nikitina, A. I. Sokolov, “Kriticheskie indeksy i psevdo-$\varepsilon$-razlozhenie”, TMF, 186:2 (2016), 230–242, arXiv: 1602.08681 | DOI | DOI | MR | Zbl
[30] A. I. Sokolov, M. A. Nikitina, “Pseudo-$\epsilon$ expansion and critical exponents of superfluid helium”, Phys. A, 444 (2016), 177–181, arXiv: 1402.4318 | DOI
[31] P. Calabrese, E. V. Orlov, D. V. Pakhnin, A. I. Sokolov, “Critical behavior of two-dimensional cubic and $MN$ models in the five-loop renormalization group approximation”, Phys. Rev. B, 70:9 (2004), 094425, 15 pp., arXiv: cond-mat/0405432 | DOI
[32] P. Calabrese, P. Parruccini, “Harmonic crossover exponents in $O(n)$ models with the pseudo-$\varepsilon$ expansion approach”, Phys. Rev. B, 71:6 (2005), 064416, 8 pp., arXiv: cond-mat/0411027 | DOI
[33] A. I. Sokolov, “Psevdo-$\epsilon$-razlozhenie i dvumernaya model Izinga”, FTT, 47:11 (2005), 2056–2059, arXiv: cond-mat/0510088
[34] A. I. Sokolov, “Fazovye perekhody v dvumernykh sistemakh i mnogopetlevye renormgruppovye razlozheniya”, TMF, 176:1 (2013), 140–149 | DOI | DOI | MR | Zbl
[35] M. A. Nikitina, A. I. Sokolov, “Critical exponents in two dimensions and pseudo-$\varepsilon$ expansion”, Phys. Rev. E, 89:4 (2014), 042146, 6 pp., arXiv: 1312.1062 | DOI