Mots-clés : Casimir effect
@article{TMF_2017_190_2_a8,
author = {H. W. Diehl and S. B. Rutkevich},
title = {The~three-dimensional $O(n)$ $\phi^4$ model on a~strip with free boundary conditions: {Exact} results for a~nontrivial dimensional crossover in the~limit $n\to\infty$},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {325--343},
year = {2017},
volume = {190},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2017_190_2_a8/}
}
TY - JOUR AU - H. W. Diehl AU - S. B. Rutkevich TI - The three-dimensional $O(n)$ $\phi^4$ model on a strip with free boundary conditions: Exact results for a nontrivial dimensional crossover in the limit $n\to\infty$ JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2017 SP - 325 EP - 343 VL - 190 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2017_190_2_a8/ LA - ru ID - TMF_2017_190_2_a8 ER -
%0 Journal Article %A H. W. Diehl %A S. B. Rutkevich %T The three-dimensional $O(n)$ $\phi^4$ model on a strip with free boundary conditions: Exact results for a nontrivial dimensional crossover in the limit $n\to\infty$ %J Teoretičeskaâ i matematičeskaâ fizika %D 2017 %P 325-343 %V 190 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_2017_190_2_a8/ %G ru %F TMF_2017_190_2_a8
H. W. Diehl; S. B. Rutkevich. The three-dimensional $O(n)$ $\phi^4$ model on a strip with free boundary conditions: Exact results for a nontrivial dimensional crossover in the limit $n\to\infty$. Teoretičeskaâ i matematičeskaâ fizika, Tome 190 (2017) no. 2, pp. 325-343. http://geodesic.mathdoc.fr/item/TMF_2017_190_2_a8/
[1] P. M. Chaikin, T. C. Lubensky, Principles of Condensed Matter Theory, Cambridge Univ. Press, Cambridge, 1995
[2] H. B. G. Casimir, “On the attraction between two perfectly conducting plates”, Proc. Akad. Wet. Amsterdam, 51 (1948), 793–795 | Zbl
[3] E. Buks, M. L. Roukes, “Stiction, adhesion energy, and the Casimir effect in micromechanical systems”, Phys. Rev. B, 63:3 (2001), 033402, 4 pp. | DOI
[4] M. Bordag, G. L. Klimchitskaya, U. Mohideen, V. M. Mostepanenko, Advances in the Casimir Effect, International Series of Monographs on Physics, 145, Oxford Univ. Press, Oxford, 2009 | Zbl
[5] M. E. Fisher, P.-G. de Gennes, “Phénomènes aux parois dans un mélange binaire critique”, C. R. Acad. Sci. Paris B, 287 (1978), 207–209
[6] R. Garcia, M. H. W. Chan, “Critical fluctuation-induced thinning of ${}^4\mathrm{He}$ films near the superfluid transition”, Phys. Rev. Lett., 83:6 (1999), 1187–1190 | DOI
[7] R. Garcia, M. H. W. Chan, “Critical Casimir effect near the ${}^3\mathrm{He}$-${}^4\mathrm{He}$ tricritical point”, Phys. Rev. Lett., 88:8 (2002), 086101, 4 pp. | DOI
[8] A. Ganshin, S. Scheidemantel, R. Garcia, M. H. W. Chan, “Critical Casimir force in ${}^4\mathrm{He}$ films: confirmation of finite-size scaling”, Phys. Rev. Lett., 97:7 (2006), 075301, 4 pp. | DOI
[9] S. Rafai, D. Bonn, J. Meunier, “Repulsive and attractive critical Casimir forces”, Phys. A, 386:1 (2007), 31–35 | DOI
[10] M. Fukuto, Y. F. Yano, P. S. Pershan, “Critical Casimir effect in three-dimensional Ising systems: measurements on binary wetting films”, Phys. Rev. Lett., 94:13 (2005), 135702, 4 pp. | DOI
[11] C. Hertlein, L. Helden, A. Gambassi, S. Dietrich, C. Bechinger, “Direct measurement of critical Casimir forces”, Nature, 451 (2008), 172–175 | DOI
[12] A. Gambassi, A. Maciołek, C. Hertlein, U. Nellen, L. Helden, C. Bechinger, S. Dietrich, “Critical Casimir effect in classical binary liquid mixtures”, Phys. Rev. E, 80:6 (2009), 061143, 27 pp. | DOI
[13] A. Gambassi, “The Casimir effect: from quantum to critical fluctuations”, J. Phys.: Conf. Ser., 161:1 (2009), 012037, 18 pp. | DOI
[14] H. W. Diehl, F. M. Schmidt, “The critical Casimir effect in films for generic non-symmetry-breaking boundary conditions”, New J. Phys., 13:12 (2011), 123025, 44 pp. | DOI
[15] F. M. Schmidt, H. W. Diehl, “Crossover from attractive to repulsive Casimir forces and vice versa”, Phys. Rev. Lett., 101:10 (2008), 100601, 4 pp. | DOI
[16] H. W. Diehl, D. Grüneberg, M. Hasenbusch, A. Hucht, S. B. Rutkevich, F. M. Schmidt, “Exact thermodynamic Casimir forces for an interacting three-dimensional model system in film geometry with free surfaces”, Europhys. Lett., 100:1 (2012), 10004, arXiv: 1205.6613 | DOI
[17] H. W. Diehl, D. Grüneberg, M. Hasenbusch, A. Hucht, S. B. Rutkevich, F. M. Schmidt, “Large-$n$ approach to thermodynamic Casimir effects in slabs with free surfaces”, Phys. Rev. E, 89:6 (2014), 062123, 21 pp., arXiv: 1405.5787 | DOI
[18] S. Sachdev, Quantum Phase Transitions, Cambridge Univ. Press, Cambridge, 2011 | DOI | MR | Zbl
[19] H. W. Diehl, “Field-theoretical approach to critical behaviour at surfaces”, Phase Transitions and Critical Phenomena, v. 10, eds. C. Domb, J. L. Lebowitz, Academic Press, London, 1986, 75–267 | MR
[20] H. W. Diehl, “The theory of boundary critical phenomena”, Internat. J. Modern Phys. B, 11 (1997), 3503–3523, arXiv: cond-mat/9610143 | DOI
[21] S. B. Rutkevich, H. W. Diehl, “Inverse-scattering-theory approach to the exact $n\to\infty$ solutions of $\mathrm O(n)$ $\phi^4$ models on films and semi-infinite systems bounded by free surfaces”, Phys. Rev. E, 91:6 (2015), 062114, 48 pp. | DOI | MR
[22] H. W. Diehl, S. Dietrich, “Scaling laws and surface exponents from renormalization group equations”, Phys. Lett. A, 80:5–6 (1980), 408–412 | DOI | MR
[23] H. W. Diehl, S. Dietrich, “Field-theoretical approach to static critical phenomena in semi-infinite systems”, Z. Phys. B, 42:1 (1981), 65–86 | DOI
[24] H. W. Diehl, S. Dietrich, “Field-theoretical approach to multicritical behavior near free surfaces”, Phys. Rev. B, 24:5 (1981), 2878–2880 | DOI
[25] H. W. Diehl, S. Dietrich, “Multicritical behaviour at surfaces”, Z. Phys. B, 50:2 (1983), 117–129 | DOI
[26] N. D. Mermin, H. Wagner, “Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models”, Phys. Rev. Lett., 17:2 (1966), 1133–1136 | DOI
[27] F. Merkl, H. Wagner, “Recurrent random walks and the absence of continuous symmetry breaking on graphs”, J. Statist. Phys., 75:1–2 (1994), 153–165 | DOI | MR | Zbl
[28] M. E. Fisher, M. N. Barber, D. Jasnow, “Helicity modulus, superfluidity, and scaling in isotropic systems”, Phys. Rev. A, 8:2 (1973), 1111–1124 | DOI | MR
[29] A. N. Vasilev, Kvantovopolevaya renormgruppa v teorii kriticheskogo povedeniya i stokhasticheskoi dinamiki, Izd-vo PIYaF, SPb., 1998
[30] M. Moshe, J. Zinn-Justin, “Quantum field theory in the large $N$ limit: a review”, Phys. Rep., 385:3–6 (2003), 69–228 | DOI | MR | Zbl
[31] D. Danchev, “Finite-size scaling Casimir force function: exact spherical-model results”, Phys. Rev. E, 53:3 (1996), 2104–2109 | DOI
[32] D. M. Danchev, “Exact three-dimensional Casimir force amplitude, $c$ function, and Binder's cumulant ratio: spherical model results”, Phys. Rev. E, 58:2 (1998), 1455–1462 | DOI
[33] D. Dantchev, H. W. Diehl, D. Grüneberg, “Excess free energy and Casimir forces in systems with long-range interactions of van der Waals type: general considerations and exact spherical-model results”, Phys. Rev. E, 73:1 (2006), 016131, 26 pp. | DOI
[34] A. Hucht, “Thermodynamic Casimir effect in ${}^4\mathrm{He}$ films near $T_\lambda$: Monte Carlo results”, Phys. Rev. Lett., 99:18 (2007), 185301, 4 pp. | DOI
[35] O. Vasilyev, A. Gambassi, A. Maciołek, S. Dietrich, “Monte Carlo simulation results for critical Casimir forces”, Europhys. Lett., 80:6 (2007), 60009, 6 pp. | DOI
[36] O. Vasilyev, A. Gambassi, A. Maciołek, S. Dietrich, “Universal scaling functions of critical Casimir forces obtained by Monte Carlo simulations”, Phys. Rev. E, 79:4 (2009), 041142, 21 pp. | DOI
[37] M. Hasenbusch, “Specific heat, internal energy, and thermodynamic Casimir force in the neighborhood of the $\lambda$ transition”, Phys. Rev. B, 81:16 (2010), 165412, 11 pp. | DOI
[38] M. Hasenbusch, “The specific heat of thin films near the $\lambda$-transition: a Monte Carlo study of an improved three-dimensional lattice model”, J. Stat. Mech., 2009:10 (2009), P10006, 38 pp. | DOI | MR
[39] M. Krech, S. Dietrich, “Finite-size scaling for critical films”, Phys. Rev. Lett., 66:3 (1991), 345–348 | DOI
[40] M. Krech, S. Dietrich, “Free energy and specific heat of critical films and surfaces”, Phys. Rev. A, 46:4 (1992), 1886–1921 | DOI
[41] H. W. Diehl, D. Grüneberg, M. A. Shpot, “Fluctuation-induced forces in periodic slabs: breakdown of $\epsilon$ expansion at the bulk critical point and revised field theory”, Europhys. Lett., 75:2 (2006), 241–247, arXiv: cond-mat/0605293 | DOI
[42] D. Grüneberg, H. W. Diehl, “Thermodynamic Casimir effects involving interacting field theories with zero modes”, Phys. Rev. B, 77:11 (2008), 115409, 22 pp., arXiv: 0710.4436 | DOI
[43] H. W. Diehl, D. Grüneberg, “Critical Casimir amplitudes for $n$-component $\phi^4$ models with $O(n)$-symmetry breaking quadratic boundary terms”, Nucl. Phys. B, 822:3 (2009), 517–542 | DOI | MR | Zbl
[44] A. Maciołek, A. Gambassi, S. Dietrich, “Critical Casimir effect in superfluid wetting films”, Phys. Rev. E, 76:3 (2007), 031124, 17 pp. | DOI
[45] R. Zandi, A. Shackell, J. Rudnick, M. Kardar, L. P. Chayes, “Thinning of superfluid films below the critical point”, Phys. Rev. E, 76:3 (2007), 030601, 4 pp. | DOI
[46] A. J. Bray, M. A. Moore, “Critical behavior of a semi-infinite system: $n$-vector model in the large-$n$ limit”, Phys. Rev. Lett., 38:14 (1977), 735–738 | DOI | MR
[47] H. W. Diehl, S. B. Rutkevich, “The $O(n)$ $\phi^4$ model with free surfaces in the large-$n$ limit: some exact results for boundary critical behaviour, fluctuation-induced forces and distant-wall corrections”, J. Phys. A: Math. Theor., 47:14 (2014), 145004, 15 pp., arXiv: 1401.1357 | DOI | MR | Zbl
[48] H. W. Diehl, D. Grüneberg, M. Hasenbusch, A. Hucht, S. B. Rutkevich, F. M. Schmidt, “Comment on `Casimir force in the $O(n\to\infty)$ model with free boundary conditions'”, Phys. Rev. E, 91:2 (2015), 026101, 3 pp., arXiv: 1405.5787 | DOI
[49] D. Dantchev, J. Bergknoff, J. Rudnick, “Casimir force in the $O(n\to\infty)$ model with free boundary conditions”, Phys. Rev. E, 89:4 (2014), 042116, 14 pp. | DOI | MR
[50] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 2, Garmonicheskii analiz. Samosopryazhennost, Mir, M., 1978 | MR | MR
[51] K. M. Case, “Singular potentials”, Phys. Rev., 80:5 (1950), 797–806 | DOI | MR | Zbl
[52] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 3, Kvantovaya mekhanika. Nerelyativistskaya teoriya, Nauka, M., 1974 | MR
[53] K. Kirsten, P. Loya, J. Park, “The very unusual properties of the resolvent, heat kernel, and zeta function for the operator $-d^2/dr^2-1/(4r^2)$”, J. Math. Phys., 47:4 (2006), 043506, 27 pp. | DOI | MR | Zbl
[54] S. B. Rutkevich, H. W. Diehl, “Inverse scattering theory and trace formulae for one-dimensional Schrödinger problems with singular potentials”, J. Phys. A: Math. Theor., 48:37 (2015), 375201, 25 pp. | DOI | MR | Zbl
[55] W. M. Frank, D. J. Land, R. M. Spector, “Singular potentials”, Rev. Modern Phys., 43:1 (1971), 36–98 | DOI | MR
[56] J. L. Cardy, “Universal critical-point amplitudes in parallel-plate geometries”, Phys. Rev. Lett., 65:12 (1990), 1443–1445 | DOI
[57] D. M. McAvity, H. Osborn, “Conformal field theories near a boundary in general dimensions”, Nucl. Phys. B, 455:3 (1995), 522–576 | DOI | MR | Zbl
[58] H. W. Diehl, S. Dietrich, E. Eisenriegler, “Universality, irrelevant surface operators, and corrections to scaling in systems with free surfaces and defect planes”, Phys. Rev. B, 27:5 (1983), 2937–2954 | DOI
[59] H. W. Diehl, A. Nüsser, “Critical behavior of the nonlinear $\sigma$ model with a free surface: the ‘ordinary’ transition in $2+\epsilon$ dimensions”, Phys. Rev. Lett., 56:26 (1986), 2834–2837 | DOI | MR