The three-dimensional $O(n)$ $\phi^4$ model on a strip with free boundary conditions: Exact results for a nontrivial dimensional crossover in the limit $n\to\infty$
Teoretičeskaâ i matematičeskaâ fizika, Tome 190 (2017) no. 2, pp. 325-343 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We briefly review recent results of exact calculations of critical Casimir forces of the $O(n)$ $\phi^4$ model as $n\to\infty$ on a three-dimensional strip bounded by two planar free surfaces at a distance $L$. This model has long-range order below the critical temperature $T_{\mathrm c}$ of the bulk phase transition only in the limit $L\to\infty$ but remains disordered for all $T>0$ for an arbitrary finite strip width $L<\infty$. A proper description of the system scaling behavior near $T_{\mathrm c}$ turns out to be a quite challenging problem because in addition to bulk, boundary, and finite-size critical behaviors, a nontrivial dimensional crossover must be handled. The model admits an exact solution in the limit $n\to\infty$ in terms of the eigenvalues and eigenenergies of a self-consistent Schrödinger equation. This solution contains a potential $v(z)$ with the near-boundary singular behavior $v(z\to0+)\approx-1/(4z^2)+4m/(\pi^2z)$, where $m=1/\xi_+(|t|)$ is the inverse bulk correlation length and $t\sim(T-T_{\mathrm c})/T_{\mathrm c}$, and a corresponding singularity at the second boundary plane. In recent joint work with colleagues, the potential $v(z)$, the excess free energy, and the Casimir force were obtained numerically with high precision. We explain how these numerical results can be complemented by exact analytic ones for several quantities (series expansion coefficients of $v(z)$, the scattering data of $v(z)$ in the semi-infinite case $L=\infty$ for all $m\gtreqless 0$, and the low-temperature asymptotic behavior of the residual free energy and the Casimir force) by a combination of boundary-operator and short-distance expansions, proper extensions of the inverse scattering theory, new trace formulas, and semiclassical expansions.
Keywords: fluctuation-induced force, inverse scattering problem, dimensional crossover, finite-size scaling.
Mots-clés : Casimir effect
@article{TMF_2017_190_2_a8,
     author = {H. W. Diehl and S. B. Rutkevich},
     title = {The~three-dimensional $O(n)$ $\phi^4$ model on a~strip with free boundary conditions: {Exact} results for a~nontrivial dimensional crossover in the~limit $n\to\infty$},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {325--343},
     year = {2017},
     volume = {190},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_190_2_a8/}
}
TY  - JOUR
AU  - H. W. Diehl
AU  - S. B. Rutkevich
TI  - The three-dimensional $O(n)$ $\phi^4$ model on a strip with free boundary conditions: Exact results for a nontrivial dimensional crossover in the limit $n\to\infty$
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 325
EP  - 343
VL  - 190
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_190_2_a8/
LA  - ru
ID  - TMF_2017_190_2_a8
ER  - 
%0 Journal Article
%A H. W. Diehl
%A S. B. Rutkevich
%T The three-dimensional $O(n)$ $\phi^4$ model on a strip with free boundary conditions: Exact results for a nontrivial dimensional crossover in the limit $n\to\infty$
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 325-343
%V 190
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2017_190_2_a8/
%G ru
%F TMF_2017_190_2_a8
H. W. Diehl; S. B. Rutkevich. The three-dimensional $O(n)$ $\phi^4$ model on a strip with free boundary conditions: Exact results for a nontrivial dimensional crossover in the limit $n\to\infty$. Teoretičeskaâ i matematičeskaâ fizika, Tome 190 (2017) no. 2, pp. 325-343. http://geodesic.mathdoc.fr/item/TMF_2017_190_2_a8/

[1] P. M. Chaikin, T. C. Lubensky, Principles of Condensed Matter Theory, Cambridge Univ. Press, Cambridge, 1995

[2] H. B. G. Casimir, “On the attraction between two perfectly conducting plates”, Proc. Akad. Wet. Amsterdam, 51 (1948), 793–795 | Zbl

[3] E. Buks, M. L. Roukes, “Stiction, adhesion energy, and the Casimir effect in micromechanical systems”, Phys. Rev. B, 63:3 (2001), 033402, 4 pp. | DOI

[4] M. Bordag, G. L. Klimchitskaya, U. Mohideen, V. M. Mostepanenko, Advances in the Casimir Effect, International Series of Monographs on Physics, 145, Oxford Univ. Press, Oxford, 2009 | Zbl

[5] M. E. Fisher, P.-G. de Gennes, “Phénomènes aux parois dans un mélange binaire critique”, C. R. Acad. Sci. Paris B, 287 (1978), 207–209

[6] R. Garcia, M. H. W. Chan, “Critical fluctuation-induced thinning of ${}^4\mathrm{He}$ films near the superfluid transition”, Phys. Rev. Lett., 83:6 (1999), 1187–1190 | DOI

[7] R. Garcia, M. H. W. Chan, “Critical Casimir effect near the ${}^3\mathrm{He}$-${}^4\mathrm{He}$ tricritical point”, Phys. Rev. Lett., 88:8 (2002), 086101, 4 pp. | DOI

[8] A. Ganshin, S. Scheidemantel, R. Garcia, M. H. W. Chan, “Critical Casimir force in ${}^4\mathrm{He}$ films: confirmation of finite-size scaling”, Phys. Rev. Lett., 97:7 (2006), 075301, 4 pp. | DOI

[9] S. Rafai, D. Bonn, J. Meunier, “Repulsive and attractive critical Casimir forces”, Phys. A, 386:1 (2007), 31–35 | DOI

[10] M. Fukuto, Y. F. Yano, P. S. Pershan, “Critical Casimir effect in three-dimensional Ising systems: measurements on binary wetting films”, Phys. Rev. Lett., 94:13 (2005), 135702, 4 pp. | DOI

[11] C. Hertlein, L. Helden, A. Gambassi, S. Dietrich, C. Bechinger, “Direct measurement of critical Casimir forces”, Nature, 451 (2008), 172–175 | DOI

[12] A. Gambassi, A. Maciołek, C. Hertlein, U. Nellen, L. Helden, C. Bechinger, S. Dietrich, “Critical Casimir effect in classical binary liquid mixtures”, Phys. Rev. E, 80:6 (2009), 061143, 27 pp. | DOI

[13] A. Gambassi, “The Casimir effect: from quantum to critical fluctuations”, J. Phys.: Conf. Ser., 161:1 (2009), 012037, 18 pp. | DOI

[14] H. W. Diehl, F. M. Schmidt, “The critical Casimir effect in films for generic non-symmetry-breaking boundary conditions”, New J. Phys., 13:12 (2011), 123025, 44 pp. | DOI

[15] F. M. Schmidt, H. W. Diehl, “Crossover from attractive to repulsive Casimir forces and vice versa”, Phys. Rev. Lett., 101:10 (2008), 100601, 4 pp. | DOI

[16] H. W. Diehl, D. Grüneberg, M. Hasenbusch, A. Hucht, S. B. Rutkevich, F. M. Schmidt, “Exact thermodynamic Casimir forces for an interacting three-dimensional model system in film geometry with free surfaces”, Europhys. Lett., 100:1 (2012), 10004, arXiv: 1205.6613 | DOI

[17] H. W. Diehl, D. Grüneberg, M. Hasenbusch, A. Hucht, S. B. Rutkevich, F. M. Schmidt, “Large-$n$ approach to thermodynamic Casimir effects in slabs with free surfaces”, Phys. Rev. E, 89:6 (2014), 062123, 21 pp., arXiv: 1405.5787 | DOI

[18] S. Sachdev, Quantum Phase Transitions, Cambridge Univ. Press, Cambridge, 2011 | DOI | MR | Zbl

[19] H. W. Diehl, “Field-theoretical approach to critical behaviour at surfaces”, Phase Transitions and Critical Phenomena, v. 10, eds. C. Domb, J. L. Lebowitz, Academic Press, London, 1986, 75–267 | MR

[20] H. W. Diehl, “The theory of boundary critical phenomena”, Internat. J. Modern Phys. B, 11 (1997), 3503–3523, arXiv: cond-mat/9610143 | DOI

[21] S. B. Rutkevich, H. W. Diehl, “Inverse-scattering-theory approach to the exact $n\to\infty$ solutions of $\mathrm O(n)$ $\phi^4$ models on films and semi-infinite systems bounded by free surfaces”, Phys. Rev. E, 91:6 (2015), 062114, 48 pp. | DOI | MR

[22] H. W. Diehl, S. Dietrich, “Scaling laws and surface exponents from renormalization group equations”, Phys. Lett. A, 80:5–6 (1980), 408–412 | DOI | MR

[23] H. W. Diehl, S. Dietrich, “Field-theoretical approach to static critical phenomena in semi-infinite systems”, Z. Phys. B, 42:1 (1981), 65–86 | DOI

[24] H. W. Diehl, S. Dietrich, “Field-theoretical approach to multicritical behavior near free surfaces”, Phys. Rev. B, 24:5 (1981), 2878–2880 | DOI

[25] H. W. Diehl, S. Dietrich, “Multicritical behaviour at surfaces”, Z. Phys. B, 50:2 (1983), 117–129 | DOI

[26] N. D. Mermin, H. Wagner, “Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models”, Phys. Rev. Lett., 17:2 (1966), 1133–1136 | DOI

[27] F. Merkl, H. Wagner, “Recurrent random walks and the absence of continuous symmetry breaking on graphs”, J. Statist. Phys., 75:1–2 (1994), 153–165 | DOI | MR | Zbl

[28] M. E. Fisher, M. N. Barber, D. Jasnow, “Helicity modulus, superfluidity, and scaling in isotropic systems”, Phys. Rev. A, 8:2 (1973), 1111–1124 | DOI | MR

[29] A. N. Vasilev, Kvantovopolevaya renormgruppa v teorii kriticheskogo povedeniya i stokhasticheskoi dinamiki, Izd-vo PIYaF, SPb., 1998

[30] M. Moshe, J. Zinn-Justin, “Quantum field theory in the large $N$ limit: a review”, Phys. Rep., 385:3–6 (2003), 69–228 | DOI | MR | Zbl

[31] D. Danchev, “Finite-size scaling Casimir force function: exact spherical-model results”, Phys. Rev. E, 53:3 (1996), 2104–2109 | DOI

[32] D. M. Danchev, “Exact three-dimensional Casimir force amplitude, $c$ function, and Binder's cumulant ratio: spherical model results”, Phys. Rev. E, 58:2 (1998), 1455–1462 | DOI

[33] D. Dantchev, H. W. Diehl, D. Grüneberg, “Excess free energy and Casimir forces in systems with long-range interactions of van der Waals type: general considerations and exact spherical-model results”, Phys. Rev. E, 73:1 (2006), 016131, 26 pp. | DOI

[34] A. Hucht, “Thermodynamic Casimir effect in ${}^4\mathrm{He}$ films near $T_\lambda$: Monte Carlo results”, Phys. Rev. Lett., 99:18 (2007), 185301, 4 pp. | DOI

[35] O. Vasilyev, A. Gambassi, A. Maciołek, S. Dietrich, “Monte Carlo simulation results for critical Casimir forces”, Europhys. Lett., 80:6 (2007), 60009, 6 pp. | DOI

[36] O. Vasilyev, A. Gambassi, A. Maciołek, S. Dietrich, “Universal scaling functions of critical Casimir forces obtained by Monte Carlo simulations”, Phys. Rev. E, 79:4 (2009), 041142, 21 pp. | DOI

[37] M. Hasenbusch, “Specific heat, internal energy, and thermodynamic Casimir force in the neighborhood of the $\lambda$ transition”, Phys. Rev. B, 81:16 (2010), 165412, 11 pp. | DOI

[38] M. Hasenbusch, “The specific heat of thin films near the $\lambda$-transition: a Monte Carlo study of an improved three-dimensional lattice model”, J. Stat. Mech., 2009:10 (2009), P10006, 38 pp. | DOI | MR

[39] M. Krech, S. Dietrich, “Finite-size scaling for critical films”, Phys. Rev. Lett., 66:3 (1991), 345–348 | DOI

[40] M. Krech, S. Dietrich, “Free energy and specific heat of critical films and surfaces”, Phys. Rev. A, 46:4 (1992), 1886–1921 | DOI

[41] H. W. Diehl, D. Grüneberg, M. A. Shpot, “Fluctuation-induced forces in periodic slabs: breakdown of $\epsilon$ expansion at the bulk critical point and revised field theory”, Europhys. Lett., 75:2 (2006), 241–247, arXiv: cond-mat/0605293 | DOI

[42] D. Grüneberg, H. W. Diehl, “Thermodynamic Casimir effects involving interacting field theories with zero modes”, Phys. Rev. B, 77:11 (2008), 115409, 22 pp., arXiv: 0710.4436 | DOI

[43] H. W. Diehl, D. Grüneberg, “Critical Casimir amplitudes for $n$-component $\phi^4$ models with $O(n)$-symmetry breaking quadratic boundary terms”, Nucl. Phys. B, 822:3 (2009), 517–542 | DOI | MR | Zbl

[44] A. Maciołek, A. Gambassi, S. Dietrich, “Critical Casimir effect in superfluid wetting films”, Phys. Rev. E, 76:3 (2007), 031124, 17 pp. | DOI

[45] R. Zandi, A. Shackell, J. Rudnick, M. Kardar, L. P. Chayes, “Thinning of superfluid films below the critical point”, Phys. Rev. E, 76:3 (2007), 030601, 4 pp. | DOI

[46] A. J. Bray, M. A. Moore, “Critical behavior of a semi-infinite system: $n$-vector model in the large-$n$ limit”, Phys. Rev. Lett., 38:14 (1977), 735–738 | DOI | MR

[47] H. W. Diehl, S. B. Rutkevich, “The $O(n)$ $\phi^4$ model with free surfaces in the large-$n$ limit: some exact results for boundary critical behaviour, fluctuation-induced forces and distant-wall corrections”, J. Phys. A: Math. Theor., 47:14 (2014), 145004, 15 pp., arXiv: 1401.1357 | DOI | MR | Zbl

[48] H. W. Diehl, D. Grüneberg, M. Hasenbusch, A. Hucht, S. B. Rutkevich, F. M. Schmidt, “Comment on `Casimir force in the $O(n\to\infty)$ model with free boundary conditions'”, Phys. Rev. E, 91:2 (2015), 026101, 3 pp., arXiv: 1405.5787 | DOI

[49] D. Dantchev, J. Bergknoff, J. Rudnick, “Casimir force in the $O(n\to\infty)$ model with free boundary conditions”, Phys. Rev. E, 89:4 (2014), 042116, 14 pp. | DOI | MR

[50] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 2, Garmonicheskii analiz. Samosopryazhennost, Mir, M., 1978 | MR | MR

[51] K. M. Case, “Singular potentials”, Phys. Rev., 80:5 (1950), 797–806 | DOI | MR | Zbl

[52] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 3, Kvantovaya mekhanika. Nerelyativistskaya teoriya, Nauka, M., 1974 | MR

[53] K. Kirsten, P. Loya, J. Park, “The very unusual properties of the resolvent, heat kernel, and zeta function for the operator $-d^2/dr^2-1/(4r^2)$”, J. Math. Phys., 47:4 (2006), 043506, 27 pp. | DOI | MR | Zbl

[54] S. B. Rutkevich, H. W. Diehl, “Inverse scattering theory and trace formulae for one-dimensional Schrödinger problems with singular potentials”, J. Phys. A: Math. Theor., 48:37 (2015), 375201, 25 pp. | DOI | MR | Zbl

[55] W. M. Frank, D. J. Land, R. M. Spector, “Singular potentials”, Rev. Modern Phys., 43:1 (1971), 36–98 | DOI | MR

[56] J. L. Cardy, “Universal critical-point amplitudes in parallel-plate geometries”, Phys. Rev. Lett., 65:12 (1990), 1443–1445 | DOI

[57] D. M. McAvity, H. Osborn, “Conformal field theories near a boundary in general dimensions”, Nucl. Phys. B, 455:3 (1995), 522–576 | DOI | MR | Zbl

[58] H. W. Diehl, S. Dietrich, E. Eisenriegler, “Universality, irrelevant surface operators, and corrections to scaling in systems with free surfaces and defect planes”, Phys. Rev. B, 27:5 (1983), 2937–2954 | DOI

[59] H. W. Diehl, A. Nüsser, “Critical behavior of the nonlinear $\sigma$ model with a free surface: the ‘ordinary’ transition in $2+\epsilon$ dimensions”, Phys. Rev. Lett., 56:26 (1986), 2834–2837 | DOI | MR