The Casimir energy in a dispersive and absorptive medium in the Fano diagonalization approach
Teoretičeskaâ i matematičeskaâ fizika, Tome 190 (2017) no. 2, pp. 277-292 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We calculate the Casimir energy of the electromagnetic field in the one-dimensional space between two metallic plates filled with a dispersive and absorptive dielectric in the framework of a microscopic approach in which the medium is modeled by a set of oscillators with continuously distributed frequencies. We analyze the treatment of singular expressions used in other papers and show that with appropriate regularization and omission of certain infinite terms, the results coincide with those obtained in an approach without such singularities. We study the asymptotic behavior at large distances and conclude that it always corresponds to attraction, but the influence of the dielectric can lead to repulsion at finite distances.
Keywords: quantum electrodynamics, dispersive and absorptive medium, Casimir energy
Mots-clés : Casimir force.
@article{TMF_2017_190_2_a5,
     author = {M. A. Braun},
     title = {The~Casimir energy in a~dispersive and absorptive medium in {the~Fano} diagonalization approach},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {277--292},
     year = {2017},
     volume = {190},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_190_2_a5/}
}
TY  - JOUR
AU  - M. A. Braun
TI  - The Casimir energy in a dispersive and absorptive medium in the Fano diagonalization approach
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 277
EP  - 292
VL  - 190
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_190_2_a5/
LA  - ru
ID  - TMF_2017_190_2_a5
ER  - 
%0 Journal Article
%A M. A. Braun
%T The Casimir energy in a dispersive and absorptive medium in the Fano diagonalization approach
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 277-292
%V 190
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2017_190_2_a5/
%G ru
%F TMF_2017_190_2_a5
M. A. Braun. The Casimir energy in a dispersive and absorptive medium in the Fano diagonalization approach. Teoretičeskaâ i matematičeskaâ fizika, Tome 190 (2017) no. 2, pp. 277-292. http://geodesic.mathdoc.fr/item/TMF_2017_190_2_a5/

[1] B. Huttner, S. M. Barnett, “Quantization of the electromagnetic field in dielectrics”, Phys. Rev. A, 46:7 (1992), 4306–4322 | DOI

[2] W. L. Mochán, C. Villarreal, “Casimir effect for arbitrary materials: contributions within and beyond the light cone”, New J. Phys., 8 (2006), 242, 21 pp. | DOI

[3] F. C. Lombardo, F. D. Mazzitelli, A. E. Rubio López, “Casimir force for absorbing media in an open quantum system framework: scalar model”, Phys. Rev. A, 84:5 (2012), 052517, 12 pp. | DOI

[4] F. S. S. Rosa, D. A. R. Dalvit, P. W. Milonni, “Electromagnetic energy, absorption, and Casimir forces: Uniform dielectric media in thermal equilibrium”, Phys. Rev. A, 81:3 (2010), 033812, 12 pp., arXiv: 0911.2736 | DOI

[5] F. Interavia, R. Behunin, “Casimir effect as a sum over modes in dissipative systems”, Phys. Rev. A, 86:6 (2012), 062517, 18 pp. | DOI

[6] F. S. S. Rosa, D. A. R. Dalvit, P. W. Milonni, Quantum fields in a dielectric: Langevin and exact diagonalization approaches, arXiv: 0912.0279

[7] T. G. Philbin, “Casimir effect from macroscopic quantum electrodynamics”, New J. Phys., 13 (2011), 063026, 21 pp. | DOI

[8] F. S. S. Rosa, D. A. R. Dalvit, P. W. Milonni, “Electromagnetic energy, absorption, and Casimir forces. II. Inhomogeneous dielectric media”, Phys. Rev. A, 84:5 (2011), 053813, 13 pp., arXiv: 1107.4369 | DOI

[9] M. A. Braun, “Energiya Kazimira kvantovannogo polya v srede s dispersiei i pogloscheniem”, TMF, 175:3 (2013), 388–397 | DOI | DOI | MR | Zbl

[10] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integraly i ryady. Spetsialnye funktsii, Nauka, M., 1983 | MR | Zbl