Invariance of the~generalized oscillator under a~linear transformation of the~related system of orthogonal polynomials
Teoretičeskaâ i matematičeskaâ fizika, Tome 190 (2017) no. 2, pp. 267-276

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the families of polynomials $\mathbb P=\{P_n(x)\}_{n=0}^\infty$ and $\mathbb Q=\{Q_n(x)\}_{n=0}^\infty$ orthogonal on the real line with respect to the respective probability measures $\mu$ and $\nu$. We assume that $\{Q_n(x)\}_{n=0}^\infty$ and $\{P_n(x)\}_{n=0}^\infty$ are connected by linear relations. In the case $k=2$, we describe all pairs $(\mathbb P,\mathbb Q)$ for which the algebras $\mathfrak A_P$ and $\mathfrak A_Q$ of generalized oscillators generated by $\{Q_n(x)\}_{n=0}^\infty$ and $\{P_n(x)\}_{n=0}^\infty$ coincide. We construct generalized oscillators corresponding to pairs $(\mathbb P,\mathbb Q)$ for arbitrary $k\ge1$.
Keywords: generalized oscillator
Mots-clés : orthogonal polynomial.
@article{TMF_2017_190_2_a4,
     author = {V. V. Borzov and E. V. Damaskinsky},
     title = {Invariance of the~generalized oscillator under a~linear transformation of the~related system of orthogonal polynomials},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {267--276},
     publisher = {mathdoc},
     volume = {190},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_190_2_a4/}
}
TY  - JOUR
AU  - V. V. Borzov
AU  - E. V. Damaskinsky
TI  - Invariance of the~generalized oscillator under a~linear transformation of the~related system of orthogonal polynomials
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 267
EP  - 276
VL  - 190
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_190_2_a4/
LA  - ru
ID  - TMF_2017_190_2_a4
ER  - 
%0 Journal Article
%A V. V. Borzov
%A E. V. Damaskinsky
%T Invariance of the~generalized oscillator under a~linear transformation of the~related system of orthogonal polynomials
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 267-276
%V 190
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2017_190_2_a4/
%G ru
%F TMF_2017_190_2_a4
V. V. Borzov; E. V. Damaskinsky. Invariance of the~generalized oscillator under a~linear transformation of the~related system of orthogonal polynomials. Teoretičeskaâ i matematičeskaâ fizika, Tome 190 (2017) no. 2, pp. 267-276. http://geodesic.mathdoc.fr/item/TMF_2017_190_2_a4/