Numerical constructions involving Chebyshev polynomials
Teoretičeskaâ i matematičeskaâ fizika, Tome 190 (2017) no. 2, pp. 354-365 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose a new algorithm for the character expansion of tensor products of finite-dimensional irreducible representations of simple Lie algebras. The algorithm produces valid results for the algebras $B_3$, $C_3$, and $D_3$. We use the direct correspondence between Weyl anti-invariant functions and multivariate second-kind Chebyshev polynomials. We construct the triangular trigonometric polynomials for the algebra $D_3$.
Keywords: algebra representation, fundamental module, three-dimensional Lie algebra, Chebyshev polynomial.
@article{TMF_2017_190_2_a10,
     author = {V. D. Lyakhovsky},
     title = {Numerical constructions involving {Chebyshev} polynomials},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {354--365},
     year = {2017},
     volume = {190},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_190_2_a10/}
}
TY  - JOUR
AU  - V. D. Lyakhovsky
TI  - Numerical constructions involving Chebyshev polynomials
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 354
EP  - 365
VL  - 190
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_190_2_a10/
LA  - ru
ID  - TMF_2017_190_2_a10
ER  - 
%0 Journal Article
%A V. D. Lyakhovsky
%T Numerical constructions involving Chebyshev polynomials
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 354-365
%V 190
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2017_190_2_a10/
%G ru
%F TMF_2017_190_2_a10
V. D. Lyakhovsky. Numerical constructions involving Chebyshev polynomials. Teoretičeskaâ i matematičeskaâ fizika, Tome 190 (2017) no. 2, pp. 354-365. http://geodesic.mathdoc.fr/item/TMF_2017_190_2_a10/

[1] T. H. Koornwinder, “Orthogonal polynomials in two variables which are eigenfunctions of two algebraically independent partial differential operators. III, IV”, Nederl. Acad. Wetensch. Proc. Ser. A, 77 (1974), 357–369, 370–381 | MR | Zbl

[2] M. Nesterenko, J. Patera, A. Tereszkiewicz, Internat. J. Math. Math. Sci., 2011 (2011), 969424, 23 pp., arXiv: 1001.3683 | DOI | MR | Zbl

[3] S. N. Filippov, V. I. Man'ko, “Chebyshev polynomials and Fourier transform of $SU(2)$ irreducible representation character as spin tomographic star-product kernel”, J. Russ. Laser Res., 30:3 (2009), 224–241 | DOI

[4] G. Leng, “Compression of aircraft aerodynamic database using multivariable Chebyshev polynomials”, Adv. Eng. Software, 28:2 (1997), 133–141 | DOI

[5] A. F. Cheng, S. E. Hawking, L. Nguyen, C. A. Monoco, G. G. Seagrave, Data compression using Chebyshev transform, US Patent No. US 7,249,153 B2, 2007

[6] V. D. Lyakhovsky, Ph. V. Uvarov, “Multivariate Chebyshev polynomials”, J. Phys. A: Math. Theor., 46:12 (2013), 125201, 22 pp. | DOI | MR | Zbl

[7] V. D. Lyakhovskii, “Mnogochleny Chebysheva ot mnogikh peremennykh v terminakh singulyarnykh elementov”, TMF, 175:3 (2013), 419–428 | DOI | DOI | MR | Zbl

[8] V. D. Lyakhovskii, “Polinomy Chebysheva dlya trekhmernoi algebry”, TMF, 185:1 (2015), 118–126 | DOI | DOI | MR

[9] R. J. Beerends, “Chebyshev polynomials in several variables and the radial part of the Laplace–Beltrami operator”, Trans. Amer. Math. Soc., 328:2 (1991), 779–814 | DOI | MR | Zbl