Numerical constructions involving Chebyshev polynomials
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 190 (2017) no. 2, pp. 354-365
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We propose a new algorithm for the character expansion of tensor products of finite-dimensional irreducible representations of simple Lie algebras. The algorithm produces valid results for the algebras $B_3$, $C_3$, and $D_3$. We use the direct correspondence between Weyl anti-invariant functions and multivariate second-kind Chebyshev polynomials. We construct the triangular trigonometric polynomials for the algebra $D_3$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
algebra representation, fundamental module, three-dimensional Lie algebra, Chebyshev polynomial.
                    
                  
                
                
                @article{TMF_2017_190_2_a10,
     author = {V. D. Lyakhovsky},
     title = {Numerical constructions involving {Chebyshev} polynomials},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {354--365},
     publisher = {mathdoc},
     volume = {190},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_190_2_a10/}
}
                      
                      
                    V. D. Lyakhovsky. Numerical constructions involving Chebyshev polynomials. Teoretičeskaâ i matematičeskaâ fizika, Tome 190 (2017) no. 2, pp. 354-365. http://geodesic.mathdoc.fr/item/TMF_2017_190_2_a10/
