Numerical constructions involving Chebyshev polynomials
Teoretičeskaâ i matematičeskaâ fizika, Tome 190 (2017) no. 2, pp. 354-365

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a new algorithm for the character expansion of tensor products of finite-dimensional irreducible representations of simple Lie algebras. The algorithm produces valid results for the algebras $B_3$, $C_3$, and $D_3$. We use the direct correspondence between Weyl anti-invariant functions and multivariate second-kind Chebyshev polynomials. We construct the triangular trigonometric polynomials for the algebra $D_3$.
Keywords: algebra representation, fundamental module, three-dimensional Lie algebra, Chebyshev polynomial.
@article{TMF_2017_190_2_a10,
     author = {V. D. Lyakhovsky},
     title = {Numerical constructions involving {Chebyshev} polynomials},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {354--365},
     publisher = {mathdoc},
     volume = {190},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_190_2_a10/}
}
TY  - JOUR
AU  - V. D. Lyakhovsky
TI  - Numerical constructions involving Chebyshev polynomials
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 354
EP  - 365
VL  - 190
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_190_2_a10/
LA  - ru
ID  - TMF_2017_190_2_a10
ER  - 
%0 Journal Article
%A V. D. Lyakhovsky
%T Numerical constructions involving Chebyshev polynomials
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 354-365
%V 190
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2017_190_2_a10/
%G ru
%F TMF_2017_190_2_a10
V. D. Lyakhovsky. Numerical constructions involving Chebyshev polynomials. Teoretičeskaâ i matematičeskaâ fizika, Tome 190 (2017) no. 2, pp. 354-365. http://geodesic.mathdoc.fr/item/TMF_2017_190_2_a10/