Flat coordinates for Saito Frobenius manifolds and string theory.
Teoretičeskaâ i matematičeskaâ fizika, Tome 189 (2016) no. 3, pp. 429-445
Voir la notice de l'article provenant de la source Math-Net.Ru
We investigate the connection between the models of topological conformal theory and noncritical string theory with Saito Frobenius manifolds. For this, we propose a new direct way to calculate the flat coordinates using the integral representation for solutions of the Gauss–Manin system connected with a given Saito Frobenius manifold. We present explicit calculations in the case of a singularity of type $A_n$. We also discuss a possible generalization of our proposed approach to $SU(N)_k/(SU(N)_{k+1} \times U(1))$ Kazama–Suzuki theories. We prove a theorem that the potential connected with these models is an isolated singularity, which is a condition for the Frobenius manifold structure to emerge on its deformation manifold. This fact allows using the Dijkgraaf–Verlinde–Verlinde approach to solve similar Kazama–Suzuki models.
Keywords:
Frobenius manifold, flat coordinates, string theory.
@article{TMF_2016_189_3_a8,
author = {A. A. Belavin and D. Gepner and Ya. A. Kononov},
title = {Flat coordinates for {Saito} {Frobenius} manifolds and string theory.},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {429--445},
publisher = {mathdoc},
volume = {189},
number = {3},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2016_189_3_a8/}
}
TY - JOUR AU - A. A. Belavin AU - D. Gepner AU - Ya. A. Kononov TI - Flat coordinates for Saito Frobenius manifolds and string theory. JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2016 SP - 429 EP - 445 VL - 189 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2016_189_3_a8/ LA - ru ID - TMF_2016_189_3_a8 ER -
A. A. Belavin; D. Gepner; Ya. A. Kononov. Flat coordinates for Saito Frobenius manifolds and string theory.. Teoretičeskaâ i matematičeskaâ fizika, Tome 189 (2016) no. 3, pp. 429-445. http://geodesic.mathdoc.fr/item/TMF_2016_189_3_a8/