Cyclic gradings of Lie algebras and Lax pairs for $\sigma$-models
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 189 (2016) no. 3, pp. 380-388
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We study a class of $\sigma$-models with complex homogeneous target spaces and zero-curvature representations. We find a relation between these models and $\sigma$-models with certain $m$-symmetric target spaces. We also describe a model with the hypercomplex target space $S^1\times S^3$ in detail.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
$\sigma$-model, integrable system, complex structure.
                    
                  
                
                
                @article{TMF_2016_189_3_a5,
     author = {D. V. Bykov},
     title = {Cyclic gradings of {Lie} algebras and {Lax} pairs for $\sigma$-models},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {380--388},
     publisher = {mathdoc},
     volume = {189},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_189_3_a5/}
}
                      
                      
                    D. V. Bykov. Cyclic gradings of Lie algebras and Lax pairs for $\sigma$-models. Teoretičeskaâ i matematičeskaâ fizika, Tome 189 (2016) no. 3, pp. 380-388. http://geodesic.mathdoc.fr/item/TMF_2016_189_3_a5/
