Cyclic gradings of Lie algebras and Lax pairs for $\sigma$-models
Teoretičeskaâ i matematičeskaâ fizika, Tome 189 (2016) no. 3, pp. 380-388
Cet article a éte moissonné depuis la source Math-Net.Ru
We study a class of $\sigma$-models with complex homogeneous target spaces and zero-curvature representations. We find a relation between these models and $\sigma$-models with certain $m$-symmetric target spaces. We also describe a model with the hypercomplex target space $S^1\times S^3$ in detail.
Keywords:
$\sigma$-model, integrable system, complex structure.
@article{TMF_2016_189_3_a5,
author = {D. V. Bykov},
title = {Cyclic gradings of {Lie} algebras and {Lax} pairs for $\sigma$-models},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {380--388},
year = {2016},
volume = {189},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2016_189_3_a5/}
}
D. V. Bykov. Cyclic gradings of Lie algebras and Lax pairs for $\sigma$-models. Teoretičeskaâ i matematičeskaâ fizika, Tome 189 (2016) no. 3, pp. 380-388. http://geodesic.mathdoc.fr/item/TMF_2016_189_3_a5/