Cyclic gradings of Lie algebras and Lax pairs for $\sigma$-models
Teoretičeskaâ i matematičeskaâ fizika, Tome 189 (2016) no. 3, pp. 380-388

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a class of $\sigma$-models with complex homogeneous target spaces and zero-curvature representations. We find a relation between these models and $\sigma$-models with certain $m$-symmetric target spaces. We also describe a model with the hypercomplex target space $S^1\times S^3$ in detail.
Keywords: $\sigma$-model, integrable system, complex structure.
@article{TMF_2016_189_3_a5,
     author = {D. V. Bykov},
     title = {Cyclic gradings of {Lie} algebras and {Lax} pairs for $\sigma$-models},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {380--388},
     publisher = {mathdoc},
     volume = {189},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_189_3_a5/}
}
TY  - JOUR
AU  - D. V. Bykov
TI  - Cyclic gradings of Lie algebras and Lax pairs for $\sigma$-models
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 380
EP  - 388
VL  - 189
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_189_3_a5/
LA  - ru
ID  - TMF_2016_189_3_a5
ER  - 
%0 Journal Article
%A D. V. Bykov
%T Cyclic gradings of Lie algebras and Lax pairs for $\sigma$-models
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 380-388
%V 189
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2016_189_3_a5/
%G ru
%F TMF_2016_189_3_a5
D. V. Bykov. Cyclic gradings of Lie algebras and Lax pairs for $\sigma$-models. Teoretičeskaâ i matematičeskaâ fizika, Tome 189 (2016) no. 3, pp. 380-388. http://geodesic.mathdoc.fr/item/TMF_2016_189_3_a5/