Functional Cantor equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 189 (2016) no. 3, pp. 355-361

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the class of entire functions of exponential type in relation to the scattering theory for the Schrödinger equation with a finite potential that is a finite Borel measure. These functions have a special self-similarity and satisfy $q$-difference functional equations. We study their asymptotic behavior and the distribution of zeros.
Keywords: inverse scattering problem, Fourier–Stieltjes integral, $q$-difference equation.
@article{TMF_2016_189_3_a2,
     author = {A. B. Shabat},
     title = {Functional {Cantor} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {355--361},
     publisher = {mathdoc},
     volume = {189},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_189_3_a2/}
}
TY  - JOUR
AU  - A. B. Shabat
TI  - Functional Cantor equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 355
EP  - 361
VL  - 189
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_189_3_a2/
LA  - ru
ID  - TMF_2016_189_3_a2
ER  - 
%0 Journal Article
%A A. B. Shabat
%T Functional Cantor equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 355-361
%V 189
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2016_189_3_a2/
%G ru
%F TMF_2016_189_3_a2
A. B. Shabat. Functional Cantor equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 189 (2016) no. 3, pp. 355-361. http://geodesic.mathdoc.fr/item/TMF_2016_189_3_a2/