Functional Cantor equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 189 (2016) no. 3, pp. 355-361
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider the class of entire functions of exponential type in relation to the scattering theory for the Schrödinger equation with a finite potential that is a finite Borel measure. These functions have a special self-similarity and satisfy $q$-difference functional equations. We study their asymptotic behavior and the distribution of zeros.
Keywords:
inverse scattering problem, Fourier–Stieltjes integral, $q$-difference equation.
@article{TMF_2016_189_3_a2,
author = {A. B. Shabat},
title = {Functional {Cantor} equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {355--361},
year = {2016},
volume = {189},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2016_189_3_a2/}
}
A. B. Shabat. Functional Cantor equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 189 (2016) no. 3, pp. 355-361. http://geodesic.mathdoc.fr/item/TMF_2016_189_3_a2/