Functional Cantor equation
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 189 (2016) no. 3, pp. 355-361
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider the class of entire functions of exponential type in relation to the scattering theory for the Schrödinger equation with a finite potential that is a finite Borel measure. These functions have a special self-similarity and satisfy $q$-difference functional equations. We study their asymptotic behavior and the distribution of zeros.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
inverse scattering problem, Fourier–Stieltjes integral, $q$-difference equation.
                    
                  
                
                
                @article{TMF_2016_189_3_a2,
     author = {A. B. Shabat},
     title = {Functional {Cantor} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {355--361},
     publisher = {mathdoc},
     volume = {189},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_189_3_a2/}
}
                      
                      
                    A. B. Shabat. Functional Cantor equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 189 (2016) no. 3, pp. 355-361. http://geodesic.mathdoc.fr/item/TMF_2016_189_3_a2/
