Functional equation for the crossover in the model of one-dimensional Weierstrass random walks
Teoretičeskaâ i matematičeskaâ fizika, Tome 189 (2016) no. 3, pp. 477-484
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider the problem of one-dimensional symmetric diffusion in the framework of Markov random walks of the Weierstrass type using two-parameter scaling for the transition probability. We construct a solution for the characteristic Lyapunov function as a sum of regular (homogeneous) and singular (nonhomogeneous) solutions and find the conditions for the crossover from normal to anomalous diffusion.
Mots-clés :
normal diffusion, anomalous diffusion, fractal dimension
Keywords: Markov process, functional pressure, Weierstrass function.
Keywords: Markov process, functional pressure, Weierstrass function.
@article{TMF_2016_189_3_a12,
author = {Yu. G. Rudoi and O. A. Kotel'nikova},
title = {Functional equation for the~crossover in the~model of one-dimensional {Weierstrass} random walks},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {477--484},
year = {2016},
volume = {189},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2016_189_3_a12/}
}
TY - JOUR AU - Yu. G. Rudoi AU - O. A. Kotel'nikova TI - Functional equation for the crossover in the model of one-dimensional Weierstrass random walks JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2016 SP - 477 EP - 484 VL - 189 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2016_189_3_a12/ LA - ru ID - TMF_2016_189_3_a12 ER -
%0 Journal Article %A Yu. G. Rudoi %A O. A. Kotel'nikova %T Functional equation for the crossover in the model of one-dimensional Weierstrass random walks %J Teoretičeskaâ i matematičeskaâ fizika %D 2016 %P 477-484 %V 189 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_2016_189_3_a12/ %G ru %F TMF_2016_189_3_a12
Yu. G. Rudoi; O. A. Kotel'nikova. Functional equation for the crossover in the model of one-dimensional Weierstrass random walks. Teoretičeskaâ i matematičeskaâ fizika, Tome 189 (2016) no. 3, pp. 477-484. http://geodesic.mathdoc.fr/item/TMF_2016_189_3_a12/