Functional equation for the~crossover in the~model of one-dimensional Weierstrass random walks
Teoretičeskaâ i matematičeskaâ fizika, Tome 189 (2016) no. 3, pp. 477-484

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of one-dimensional symmetric diffusion in the framework of Markov random walks of the Weierstrass type using two-parameter scaling for the transition probability. We construct a solution for the characteristic Lyapunov function as a sum of regular (homogeneous) and singular (nonhomogeneous) solutions and find the conditions for the crossover from normal to anomalous diffusion.
Mots-clés : normal diffusion, anomalous diffusion, fractal dimension
Keywords: Markov process, functional pressure, Weierstrass function.
@article{TMF_2016_189_3_a12,
     author = {Yu. G. Rudoi and O. A. Kotel'nikova},
     title = {Functional equation for the~crossover in the~model of one-dimensional {Weierstrass} random walks},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {477--484},
     publisher = {mathdoc},
     volume = {189},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_189_3_a12/}
}
TY  - JOUR
AU  - Yu. G. Rudoi
AU  - O. A. Kotel'nikova
TI  - Functional equation for the~crossover in the~model of one-dimensional Weierstrass random walks
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 477
EP  - 484
VL  - 189
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_189_3_a12/
LA  - ru
ID  - TMF_2016_189_3_a12
ER  - 
%0 Journal Article
%A Yu. G. Rudoi
%A O. A. Kotel'nikova
%T Functional equation for the~crossover in the~model of one-dimensional Weierstrass random walks
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 477-484
%V 189
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2016_189_3_a12/
%G ru
%F TMF_2016_189_3_a12
Yu. G. Rudoi; O. A. Kotel'nikova. Functional equation for the~crossover in the~model of one-dimensional Weierstrass random walks. Teoretičeskaâ i matematičeskaâ fizika, Tome 189 (2016) no. 3, pp. 477-484. http://geodesic.mathdoc.fr/item/TMF_2016_189_3_a12/