Multiplicative form of the~Lagrangian
Teoretičeskaâ i matematičeskaâ fizika, Tome 189 (2016) no. 3, pp. 335-354

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain an alternative class of Lagrangians in the so-called the multiplicative form for a system with one degree of freedom in the nonrelativistic and the relativistic cases. This new form of the Lagrangian can be regarded as a one-parameter class with the parameter $\lambda$ obtained using an extension of the standard additive form of the Lagrangian because both forms yield the same equation of motion. We note that the multiplicative form of the Lagrangian can be regarded as a generating function for obtaining an infinite hierarchy of Lagrangians that yield the same equation of motion. This nontrivial set of Lagrangians confirms that the Lagrange function is in fact nonunique.
Keywords: nonuniqueness, Hamiltonian.
Mots-clés : multiplicative form
@article{TMF_2016_189_3_a1,
     author = {K. Surawuttinack and S. Yoo-Kong and M. Tanasittikosol},
     title = {Multiplicative form of {the~Lagrangian}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {335--354},
     publisher = {mathdoc},
     volume = {189},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_189_3_a1/}
}
TY  - JOUR
AU  - K. Surawuttinack
AU  - S. Yoo-Kong
AU  - M. Tanasittikosol
TI  - Multiplicative form of the~Lagrangian
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 335
EP  - 354
VL  - 189
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_189_3_a1/
LA  - ru
ID  - TMF_2016_189_3_a1
ER  - 
%0 Journal Article
%A K. Surawuttinack
%A S. Yoo-Kong
%A M. Tanasittikosol
%T Multiplicative form of the~Lagrangian
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 335-354
%V 189
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2016_189_3_a1/
%G ru
%F TMF_2016_189_3_a1
K. Surawuttinack; S. Yoo-Kong; M. Tanasittikosol. Multiplicative form of the~Lagrangian. Teoretičeskaâ i matematičeskaâ fizika, Tome 189 (2016) no. 3, pp. 335-354. http://geodesic.mathdoc.fr/item/TMF_2016_189_3_a1/