Translation-invariant and periodic Gibbs measures for the Potts model on a Cayley tree
Teoretičeskaâ i matematičeskaâ fizika, Tome 189 (2016) no. 2, pp. 286-295 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study translation-invariant Gibbs measures on a Cayley tree of order $k=3$ for the ferromagnetic three-state Potts model. We obtain explicit formulas for translation-invariant Gibbs measures. We also consider periodic Gibbs measures on a Cayley tree of order $k$ for the antiferromagnetic $q$-state Potts model. Moreover, we improve previously obtained results: we find the exact number of periodic Gibbs measures with the period two on a Cayley tree of order $k\ge3$ that are defined on some invariant sets.
Keywords: Cayley tree, Potts model, Gibbs measure, translation-invariant measure, periodic measure.
Mots-clés : configuration
@article{TMF_2016_189_2_a8,
     author = {R. M. Khakimov and F. Kh. Khaidarov},
     title = {Translation-invariant and periodic {Gibbs} measures for {the~Potts} model on {a~Cayley} tree},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {286--295},
     year = {2016},
     volume = {189},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_189_2_a8/}
}
TY  - JOUR
AU  - R. M. Khakimov
AU  - F. Kh. Khaidarov
TI  - Translation-invariant and periodic Gibbs measures for the Potts model on a Cayley tree
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 286
EP  - 295
VL  - 189
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_189_2_a8/
LA  - ru
ID  - TMF_2016_189_2_a8
ER  - 
%0 Journal Article
%A R. M. Khakimov
%A F. Kh. Khaidarov
%T Translation-invariant and periodic Gibbs measures for the Potts model on a Cayley tree
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 286-295
%V 189
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2016_189_2_a8/
%G ru
%F TMF_2016_189_2_a8
R. M. Khakimov; F. Kh. Khaidarov. Translation-invariant and periodic Gibbs measures for the Potts model on a Cayley tree. Teoretičeskaâ i matematičeskaâ fizika, Tome 189 (2016) no. 2, pp. 286-295. http://geodesic.mathdoc.fr/item/TMF_2016_189_2_a8/

[1] Kh.-O. Georgi, Gibbsovskie mery i fazovye perekhody, Mir, M., 1992 | MR | Zbl

[2] K. Preston, Gibbsovskie sostoyaniya na schetnykh mnozhestvakh, Mir, M., 1977 | MR

[3] Ya. G. Sinai, Teoriya fazovykh perekhodov. Strogie rezultaty, Nauka, M., 1980 | MR | MR | Zbl

[4] N. N. Ganikhodzhaev, TMF, 85:2 (1990), 163–175 | DOI | MR

[5] N. N. Ganikhodzhaev, Dokl. AN RUz, 6–7 (1992), 4–7

[6] U. A. Rozikov, Gibbs Measures on Cayley Trees, World Sci., Singapore, 2013 | MR | Zbl

[7] N. N. Ganikhodjaev, U. A. Rozikov, Lett. Math. Phys., 75:2 (2006), 99–109 | DOI | MR | Zbl

[8] U. A. Rozikov, R. M. Khakimov, TMF, 173:1 (2012), 60–70 | DOI | DOI | Zbl

[9] R. M. Khakimov, Uzbek. matem. zhurn., 2014, no. 3, 134–142 | MR

[10] R. M. Khakimov, Zhurn. SFU. Ser. Matem. i fiz., 7:3 (2014), 297–304 | MR

[11] C. Külske, U. A. Rozikov, R. M. Khakimov, J. Stat. Phys., 156:1 (2014), 189–200 | DOI | MR | Zbl

[12] C. Külske, U. A. Rozikov, Fuzzy transformations and extremality of Gibbs measures for the Potts model on a Cayley tree, arXiv: 1403.5775 | MR