Multiple commutation relations in the models with $\mathfrak gl(2|1)$ symmetry
Teoretičeskaâ i matematičeskaâ fizika, Tome 189 (2016) no. 2, pp. 256-278 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider quantum integrable models with the $\mathfrak gl(2|1)$ symmetry and derive a set of multiple commutation relations between the monodromy matrix elements. These multiple commutation relations allow obtaining different representations for Bethe vectors.
Keywords: Bethe ansatz
Mots-clés : monodromy matrix, commutation relation.
@article{TMF_2016_189_2_a6,
     author = {N. A. Slavnov},
     title = {Multiple commutation relations in the~models with $\mathfrak gl(2|1)$ symmetry},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {256--278},
     year = {2016},
     volume = {189},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_189_2_a6/}
}
TY  - JOUR
AU  - N. A. Slavnov
TI  - Multiple commutation relations in the models with $\mathfrak gl(2|1)$ symmetry
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 256
EP  - 278
VL  - 189
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_189_2_a6/
LA  - ru
ID  - TMF_2016_189_2_a6
ER  - 
%0 Journal Article
%A N. A. Slavnov
%T Multiple commutation relations in the models with $\mathfrak gl(2|1)$ symmetry
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 256-278
%V 189
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2016_189_2_a6/
%G ru
%F TMF_2016_189_2_a6
N. A. Slavnov. Multiple commutation relations in the models with $\mathfrak gl(2|1)$ symmetry. Teoretičeskaâ i matematičeskaâ fizika, Tome 189 (2016) no. 2, pp. 256-278. http://geodesic.mathdoc.fr/item/TMF_2016_189_2_a6/

[1] E. K. Sklyanin, L. A. Takhtadzhyan, L. D. Faddeev, TMF, 40:2 (1979), 194–220 | DOI | MR

[2] L. A. Takhtadzhyan, L. D. Faddeev, UMN, 34:5(209) (1979), 13–63 | DOI | MR

[3] L. D. Faddeev, “How the algebraic Bethe ansatz works for integrable models”, Symmétries quantiques [Quantum Symmetries], Proceedings of the Les Houches summer school, Session LXIV (Les Houches, France, August 1 – September 8, 1995), eds. A. Connes, K. Gawedzki, J. Zinn-Justin, North-Holland, Amsterdam, 1998, 149–219 | MR | Zbl

[4] V. E. Korepin, N. M. Bogoliubov, A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl

[5] N. Kitanine, J. M. Maillet, V. Terras, Nucl. Phys. B, 567:3 (2000), 554–582, arXiv: math-ph/9907019 | DOI | MR | Zbl

[6] N. Kitanine, K. K. Kozlowski, J. M. Maillet, N. A. Slavnov, V. Terras, J. Stat. Mech., 09 (2012), P09001, 33 pp., arXiv: 1206.2630 | DOI | MR

[7] F. Göhmann, A. Klümper, A. Seel, J. Phys. A: Math. Gen., 37:31 (2004), 7625–7652, arXiv: hep-th/0405089 | DOI | MR

[8] A. G. Izergin, V. E. Korepin, Commun. Math. Phys., 94:1 (1984), 67–92 | DOI | MR | Zbl

[9] N. Kitanine, J. M. Maillet, N. A. Slavnov, V. Terras, Nucl. Phys. B, 641:3 (2002), 487–518, arXiv: hep-th/0201045 | DOI | MR | Zbl

[10] S. Belliard, S. Pakuliak, E. Ragoucy, N. A. Slavnov, J. Stat. Mech., 02 (2013), P02020, 24 pp., arXiv: 1210.0768 | DOI | MR

[11] F. C. Zhang, T. M. Rice, Phys. Rev. B, 37:7 (1988), 3759–3761 | DOI

[12] P. Schlottmann, Phys. Rev. B, 36:10 (1987), 5177–5185 | DOI

[13] P. A. Bares, G. Blatter, Phys. Rev. Lett., 64:21 (1990), 2567–2570 | DOI | MR | Zbl

[14] S. Sarkar, J. Phys. A: Math. Gen., 23:9 (1990), L409–L414 | DOI

[15] P. A. Bares, G. Blatter, M. Ogata, Phys. Rev. B, 44:1 (1991), 130–154 | DOI

[16] S. Sarkar, J. Phys. A: Math. Gen., 24:5 (1991), 1137–1152 | DOI | MR

[17] F. H. L. Essler, V. E. Korepin, Phys. Rev. B, 46:14 (1992), 9147–9162 | DOI

[18] A. Foerster, M. Karowski, Nucl. Phys. B, 396:2–3 (1993), 611–638 | DOI | MR

[19] S. Z. Pakulyak, S. M. Khoroshkin, TMF, 145:1 (2005), 3–34, arXiv: math/0610433 | DOI | DOI | MR | Zbl

[20] S. Khoroshkin, S. Pakuliak, V. Tarasov, J. Geom. Phys., 57:8 (2007), 1713–1732, arXiv: math/0610517 | DOI | MR | Zbl

[21] L. Frappat, S. Khoroshkin, S. Pakuliak, E. Ragoucy, Ann. H. Poincaré, 10:3 (2009), 513–548, arXiv: 0810.3135 | DOI | MR | Zbl

[22] S. Belliard, S. Z. Pakuliak, E. Ragoucy, SIGMA, 6 (2010), 094, 22 pp., arXiv: 1012.1455 | DOI | MR | Zbl

[23] V. Tarasov, A. Varchenko, SIGMA, 9 (2013), 048, 28 pp., arXiv: math.QA/0702277 | DOI | MR | Zbl

[24] S. Belliard, E. Ragoucy, J. Phys. A: Math. Theor., 41:29 (2008), 295202, 33 pp., arXiv: 0804.2822 | DOI | MR | Zbl

[25] S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, Bethe vectors for models based on the super-Yangian $Y(\mathfrak{gl}(m|n))$, arXiv: 1604.02311

[26] P. P. Kulish, E. K. Sklyanin, Zap. nauchn. sem. LOMI, 95 (1980), 129–160 | DOI | MR

[27] V. E. Korepin, Commun. Math. Phys., 86:3 (1982), 391–418 | DOI | MR | Zbl

[28] A. G. Izergin, Dokl. AN SSSR, 297:2 (1987), 331–333 | MR | Zbl

[29] S. Belliard, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, J. Stat. Mech., 2012:9 (2012), P09003, 17 pp., arXiv: 1206.4931 | DOI | MR