Solvability of a~nonlinear model Boltzmann equation in the~problem of a~plane shock wave
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 189 (2016) no. 2, pp. 239-255
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider a nonlinear system of integral equations describing the structure of a plane shock wave. Based on physical reasoning, we propose an iterative method for constructing an approximate solution of this system. The problem reduces to studying decoupled scalar nonlinear and linear integral equations for the gas temperature, density, and velocity. We formulate a theorem on the existence of a positive bounded solution of a nonlinear equation of the Uryson type. We also prove theorems on the existence and uniqueness of bounded positive solutions for linear integral equations in the space $L_1[-r,r]$ for all finite $r+\infty$. For a more general nonlinear integral equation, we prove a theorem on the existence of a positive solution and also find a lower bound and an integral upper bound for the constructed solution.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
nonlinearity, shock wave, integral equation, bounded solution, iteration, pointwise convergence.
                    
                  
                
                
                @article{TMF_2016_189_2_a5,
     author = {A. Kh. Khachatryan and Kh. A. Khachatryan},
     title = {Solvability of a~nonlinear model {Boltzmann} equation in the~problem of a~plane shock wave},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {239--255},
     publisher = {mathdoc},
     volume = {189},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_189_2_a5/}
}
                      
                      
                    TY - JOUR AU - A. Kh. Khachatryan AU - Kh. A. Khachatryan TI - Solvability of a~nonlinear model Boltzmann equation in the~problem of a~plane shock wave JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2016 SP - 239 EP - 255 VL - 189 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2016_189_2_a5/ LA - ru ID - TMF_2016_189_2_a5 ER -
%0 Journal Article %A A. Kh. Khachatryan %A Kh. A. Khachatryan %T Solvability of a~nonlinear model Boltzmann equation in the~problem of a~plane shock wave %J Teoretičeskaâ i matematičeskaâ fizika %D 2016 %P 239-255 %V 189 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2016_189_2_a5/ %G ru %F TMF_2016_189_2_a5
A. Kh. Khachatryan; Kh. A. Khachatryan. Solvability of a~nonlinear model Boltzmann equation in the~problem of a~plane shock wave. Teoretičeskaâ i matematičeskaâ fizika, Tome 189 (2016) no. 2, pp. 239-255. http://geodesic.mathdoc.fr/item/TMF_2016_189_2_a5/
