Algebraic and geometric structures of analytic partial differential equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 189 (2016) no. 2, pp. 219-238 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the problem of the compatibility of nonlinear partial differential equations. We introduce the algebra of convergent power series, the module of derivations of this algebra, and the module of Pfaffian forms. Systems of differential equations are given by power series in the space of infinite jets. We develop a technique for studying the compatibility of differential systems analogous to the Gröbner bases. Using certain assumptions, we prove that compatible systems generate infinite manifolds.
Keywords: compatibility of differential equations, reduction, infinite-dimensional manifold, Gröbner basis.
@article{TMF_2016_189_2_a4,
     author = {O. V. Kaptsov},
     title = {Algebraic and geometric structures of analytic partial differential equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {219--238},
     year = {2016},
     volume = {189},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_189_2_a4/}
}
TY  - JOUR
AU  - O. V. Kaptsov
TI  - Algebraic and geometric structures of analytic partial differential equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 219
EP  - 238
VL  - 189
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_189_2_a4/
LA  - ru
ID  - TMF_2016_189_2_a4
ER  - 
%0 Journal Article
%A O. V. Kaptsov
%T Algebraic and geometric structures of analytic partial differential equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 219-238
%V 189
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2016_189_2_a4/
%G ru
%F TMF_2016_189_2_a4
O. V. Kaptsov. Algebraic and geometric structures of analytic partial differential equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 189 (2016) no. 2, pp. 219-238. http://geodesic.mathdoc.fr/item/TMF_2016_189_2_a4/

[1] D. Koks, Dzh. Littl, D. O'Shi, Idealy, mnogoobraziya i algoritmy, Mir, M., 2000 | DOI | MR | Zbl

[2] B. Bukhberger, “Bazisy Grebnera. Algoritmicheskii metod v teorii polinomialnykh idealov”, Kompyuternaya algebra. Simvolicheskie i algebraicheskie vychisleniya, eds. B. Bukhberger, Dzh. Kollinz, R. Loos, Mir, M., 1986, 331–372 | MR | MR

[3] Ch. Riquier, Les systèmes d'équations aux dérivées partielles, Gauthier-Villars, Paris, 1909 | Zbl

[4] M. Janet, Leçons sur les systémes des équations aux dérivées partielles, Gauthier-Villars, Paris, 1929 | Zbl

[5] Zh. Pommare, Sistemy uravnenii s chastnymi proizvodnymi i psevdogruppy Li, Mir, M., 1983 | MR | MR | Zbl

[6] A. M. Vinogradov, I. S. Krasilschik, V. V. Lychagin, Vvedenie v geometriyu nelineinykh differentsialnykh uravnenii, Nauka, M., 1986 | MR | MR | Zbl

[7] V. V. Zharinov, Lecture Notes on Geometrical Aspects of Partial Differential Equations, Series on Soviet and East European Mathematics, 9, World Sci., Singapore, 1992 | MR | Zbl

[8] W. M. Seiler, Involution: The Formal Theory of Differential Equations and its Applications in Computer Algebra, Algorithms and Computation in Mathematics, 24, Springer, New York, 2010 | DOI | MR | Zbl

[9] M. Marvan, Found. Comput. Math., 9:6 (2009), 651–674 | DOI | MR | Zbl

[10] Maple http://www.maplesoft.com/products/Maple/index.aspx

[11] O. V. Kaptsov, Programmirovanie, 40:2 (2014), 32–40 | DOI | MR

[12] O. V. Kaptsov, TMF, 183:3 (2015), 342–358 | DOI | DOI | MR | Zbl

[13] G. Grauert, R. Remmert, Analiticheskie lokalnye algebry, Nauka, M., 1988 | MR

[14] R. Ganning, Kh. Rossi, Analiticheskie funktsii mnogikh kompleksnykh peremennykh, Mir, M., 1969 | MR | MR | Zbl

[15] Zh.-P. Serr, Algebry Li i gruppy Li, Mir, M., 1969 | DOI | MR | MR | Zbl

[16] N. Burbaki, Algebra. Mnogochleny i polya. Uporyadochennye gruppy, Nauka, M., 1965 | MR

[17] L. V. Ovsyannikov, Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR | MR

[18] A. M. Vinogradov, I. S. Krasilschik (red.), Simmetrii i zakony sokhraneniya uravnenii matematicheskoi fiziki, Faktorial, M., 1997

[19] V. K. Andreev, O. V. Kaptsov, V. V. Pukhnachov, A. A. Rodionov, Applications of Group-Theoretical Methods in Hydrodynamics, Springer, Amsterdam, 2010 | DOI | MR | Zbl

[20] N. Burbaki, Obschaya topologiya. Osnovnye struktury, Nauka, M., 1968 | MR | MR | Zbl

[21] A. I. Belousov, S. B. Tkachev, Diskretnaya matematika, Izd-vo MGTU, M., 2004

[22] J. F. Ritt, Differential Algebra, Dover, New York, 1966 | MR

[23] D. Mamford, Krasnaya kniga o mnogoobraziyakh i skhemakh, MTsMNO, M., 2007

[24] C.-S. Yih, Stratified Flows, Academic Press, New York, 1980 | MR | Zbl

[25] Yu. V. Shanko, Vych. tekhnologii, 6:5 (2001), 106–117 | MR | Zbl

[26] M. Golubitskii, V. Giiemin, Ustoichivye otobrazheniya i ikh osobennosti, Mir, M., 1977 | DOI | MR | MR | Zbl

[27] V. A. Dorodnitsyn, “Gruppy preobrazovanii v setochnykh prostranstvakh”, Itogi nauki i tekhn. Ser. Sovrem. probl. matem. Nov. dostizh., 34, VINITI, M., 1989, 149–191 | DOI | MR | Zbl | Zbl