Fusion transformations in Liouville theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 189 (2016) no. 2, pp. 198-218 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the fusion kernel for nondegenerate conformal blocks in the Liouville theory as a solution of difference equations originating from the pentagon identity. We propose an approach for solving these equations based on a "nonperturbative" series expansion that allows calculating the fusion kernel iteratively. We also find exact solutions for the special central charge values $c=1+6(b-b^{-1})^2$, $b\in\mathbb N$. For $c=1$, the obtained result reproduces the formula previously obtained from analytic properties of a solution of a Painlevé equation, but our solution has a significantly simplified form.
Keywords: conformal field theory, Liouville theory, Virasoro algebra.
@article{TMF_2016_189_2_a3,
     author = {N. A. Nemkov},
     title = {Fusion transformations in {Liouville} theory},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {198--218},
     year = {2016},
     volume = {189},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_189_2_a3/}
}
TY  - JOUR
AU  - N. A. Nemkov
TI  - Fusion transformations in Liouville theory
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 198
EP  - 218
VL  - 189
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_189_2_a3/
LA  - ru
ID  - TMF_2016_189_2_a3
ER  - 
%0 Journal Article
%A N. A. Nemkov
%T Fusion transformations in Liouville theory
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 198-218
%V 189
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2016_189_2_a3/
%G ru
%F TMF_2016_189_2_a3
N. A. Nemkov. Fusion transformations in Liouville theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 189 (2016) no. 2, pp. 198-218. http://geodesic.mathdoc.fr/item/TMF_2016_189_2_a3/

[1] A. A. Belavin, A. M. Polyakov, A. B. Zamolodchikov, Nucl. Phys. B, 241:2 (1984), 333–380 | DOI | MR | Zbl

[2] L. F. Alday, D. Gaiotto, Y. Tachikawa, Lett. Math. Phys., 91:2 (2010), 167–197, arXiv: 0906.3219 | DOI | MR | Zbl

[3] G. W. Moore, N. Seiberg, Commun. Math. Phys., 123:2 (1989), 177–254 | DOI | MR | Zbl

[4] B. Ponsot, J. Teschner, Liouville bootstrap via harmonic analysis on a noncompact quantum group, arXiv: hep-th/9911110

[5] B. Ponsot, J. Teschner, Commun. Math. Phys., 224:3 (2001), 613–655, arXiv: math/0007097 | DOI | MR

[6] N. Iorgov, O. Lisovyy, Yu. Tykhyy, JHEP, 12 (2013), 029, 26 pp., arXiv: 1308.4092 | DOI | MR | Zbl

[7] D. Galakhov, A. Mironov, A. Morozov, JHEP, 06 (2014), 050, 24 pp., arXiv: 1311.7069 | DOI

[8] J. Teschner, “From Liouville theory to the quantum geometry of Riemann surfaces”, Prospects in Mathematical Physics, Contemporary Mathematics, 437, eds. J. C. Mourão, J. P. Nunes, R. Picken, J.-C. Zambrini, AMS, Providence, RI, 2007, 231–246, arXiv: hep-th/0308031 | DOI | MR

[9] Al. B. Zamolodchikov, ZhETF, 90:5 (1986), 1808–1818 | MR

[10] D. Galakhov, A. Mironov, A. Morozov, JHEP, 08 (2012), 067, 27 pp., arXiv: 1205.4998 | DOI | MR

[11] N. Nemkov, J. Phys. A: Math. Theor., 47:10 (2014), 105401, 15 pp., arXiv: 1307.0773 | DOI | MR | Zbl

[12] M. Billó, M. Frau, L. Gallot, A. Lerda, I. Pesando, JHEP, 11 (2013), 123, 34 pp., arXiv: 1307.6648 | DOI | MR | Zbl