Finsler generalization of the Tamm metric
Teoretičeskaâ i matematičeskaâ fizika, Tome 189 (2016) no. 2, pp. 186-197 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study manifolds of the Finsler type whose tangent $($pseudo-$)$Riemannian spaces are invariant under the $($pseudo$)$orthogonal group. We construct the Cartan connection and study geodesics, extremals, and also motions. We establish that if the metric tensor of the space is a homogeneous tensor of the zeroth order with respect to the coordinates of the tangent vector, then the metric of the tangent space is realized on a cone of revolution. We describe the structure of geodesics on the cone as trajectories of motion of a free particle in a central field.
Mots-clés : Finsler Tamm space, Cartan connection, motion
Keywords: geodesic.
@article{TMF_2016_189_2_a2,
     author = {V. I. Panzhenskij and O. P. Surina},
     title = {Finsler generalization of {the~Tamm} metric},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {186--197},
     year = {2016},
     volume = {189},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_189_2_a2/}
}
TY  - JOUR
AU  - V. I. Panzhenskij
AU  - O. P. Surina
TI  - Finsler generalization of the Tamm metric
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 186
EP  - 197
VL  - 189
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_189_2_a2/
LA  - ru
ID  - TMF_2016_189_2_a2
ER  - 
%0 Journal Article
%A V. I. Panzhenskij
%A O. P. Surina
%T Finsler generalization of the Tamm metric
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 186-197
%V 189
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2016_189_2_a2/
%G ru
%F TMF_2016_189_2_a2
V. I. Panzhenskij; O. P. Surina. Finsler generalization of the Tamm metric. Teoretičeskaâ i matematičeskaâ fizika, Tome 189 (2016) no. 2, pp. 186-197. http://geodesic.mathdoc.fr/item/TMF_2016_189_2_a2/

[1] I. E. Tamm, “O krivom impulsnom prostranstve”, Sobranie nauchnykh trudov, v. 2, Nauka, M., 1975, 218–225

[2] I. E. Tamm, V. G. Vologodskii, “Ob ispolzovanii krivogo impulsnogo prostranstva pri postoroenii nelokalnoi evklidovoi teorii polya”, Sobranie nauchnykh trudov, v. 2, Nauka, M., 1975, 226–253

[3] V. I. Panzhenskii, O. V. Sukhova, “K geometrii prostranstv s metrikoi Tamma”, Sbornik trudov Mezhdunarodnogo geometricheskogo seminara im. G. F. Lapteva (Penza, 26–31 yanvarya 2004\;g.), PGPU, Penza, 2004, 95–101

[4] Kh. Rund, Differentsialnaya geometriya finslerovykh prostranstv, Nauka, M., 1981 | MR

[5] V. I. Panzhenskii, “Infinitezimalnye avtomorfizmy metricheskikh struktur finslerova tipa”, Itogi nauki i tekhn. Ser. Sovrem. matem. i ee pril. Temat. obz., 123 (2009), 81–109, M. | DOI | MR

[6] L. P. Eizenkhard, Nepreryvnye gruppy preobrazovanii, IL, M., 1947 | MR | Zbl

[7] V. F. Kagan, Subproektivnye prostranstva, Fizmatlit, M., 1961 | MR