Keywords: geodesic.
@article{TMF_2016_189_2_a2,
author = {V. I. Panzhenskij and O. P. Surina},
title = {Finsler generalization of {the~Tamm} metric},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {186--197},
year = {2016},
volume = {189},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2016_189_2_a2/}
}
V. I. Panzhenskij; O. P. Surina. Finsler generalization of the Tamm metric. Teoretičeskaâ i matematičeskaâ fizika, Tome 189 (2016) no. 2, pp. 186-197. http://geodesic.mathdoc.fr/item/TMF_2016_189_2_a2/
[1] I. E. Tamm, “O krivom impulsnom prostranstve”, Sobranie nauchnykh trudov, v. 2, Nauka, M., 1975, 218–225
[2] I. E. Tamm, V. G. Vologodskii, “Ob ispolzovanii krivogo impulsnogo prostranstva pri postoroenii nelokalnoi evklidovoi teorii polya”, Sobranie nauchnykh trudov, v. 2, Nauka, M., 1975, 226–253
[3] V. I. Panzhenskii, O. V. Sukhova, “K geometrii prostranstv s metrikoi Tamma”, Sbornik trudov Mezhdunarodnogo geometricheskogo seminara im. G. F. Lapteva (Penza, 26–31 yanvarya 2004\;g.), PGPU, Penza, 2004, 95–101
[4] Kh. Rund, Differentsialnaya geometriya finslerovykh prostranstv, Nauka, M., 1981 | MR
[5] V. I. Panzhenskii, “Infinitezimalnye avtomorfizmy metricheskikh struktur finslerova tipa”, Itogi nauki i tekhn. Ser. Sovrem. matem. i ee pril. Temat. obz., 123 (2009), 81–109, M. | DOI | MR
[6] L. P. Eizenkhard, Nepreryvnye gruppy preobrazovanii, IL, M., 1947 | MR | Zbl
[7] V. F. Kagan, Subproektivnye prostranstva, Fizmatlit, M., 1961 | MR