Higher-order analogues of the~unitarity condition for quantum $R$-matrices
Teoretičeskaâ i matematičeskaâ fizika, Tome 189 (2016) no. 2, pp. 176-185
Voir la notice de l'article provenant de la source Math-Net.Ru
We derive a family of $n$th-order identities for quantum $R$-matrices of the Baxter–Belavin type in the fundamental representation. The set of identities includes the unitarity condition as the simplest case $(n=2)$. Our study is inspired by the fact that the third-order identity provides commutativity of the Knizhnik–Zamolodchikov–Bernard connections. On the other hand, the same identity yields the $R$-matrix-valued Lax pairs for classical integrable systems of Calogero type, whose construction uses the interpretation of the quantum $R$-matrix as a matrix generalization of the Kronecker function. We present a proof of the higher-order scalar identities for the Kronecker functions, which is then naturally generalized to $R$-matrix identities.
Keywords:
classical integrable system, $R$-matrix Lax representation, duality.
@article{TMF_2016_189_2_a1,
author = {A. V. Zotov},
title = {Higher-order analogues of the~unitarity condition for quantum $R$-matrices},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {176--185},
publisher = {mathdoc},
volume = {189},
number = {2},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2016_189_2_a1/}
}
A. V. Zotov. Higher-order analogues of the~unitarity condition for quantum $R$-matrices. Teoretičeskaâ i matematičeskaâ fizika, Tome 189 (2016) no. 2, pp. 176-185. http://geodesic.mathdoc.fr/item/TMF_2016_189_2_a1/