Higher-order analogues of the unitarity condition for quantum $R$-matrices
Teoretičeskaâ i matematičeskaâ fizika, Tome 189 (2016) no. 2, pp. 176-185 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We derive a family of $n$th-order identities for quantum $R$-matrices of the Baxter–Belavin type in the fundamental representation. The set of identities includes the unitarity condition as the simplest case $(n=2)$. Our study is inspired by the fact that the third-order identity provides commutativity of the Knizhnik–Zamolodchikov–Bernard connections. On the other hand, the same identity yields the $R$-matrix-valued Lax pairs for classical integrable systems of Calogero type, whose construction uses the interpretation of the quantum $R$-matrix as a matrix generalization of the Kronecker function. We present a proof of the higher-order scalar identities for the Kronecker functions, which is then naturally generalized to $R$-matrix identities.
Keywords: classical integrable system, $R$-matrix Lax representation, duality.
@article{TMF_2016_189_2_a1,
     author = {A. V. Zotov},
     title = {Higher-order analogues of the~unitarity condition for quantum $R$-matrices},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {176--185},
     year = {2016},
     volume = {189},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_189_2_a1/}
}
TY  - JOUR
AU  - A. V. Zotov
TI  - Higher-order analogues of the unitarity condition for quantum $R$-matrices
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 176
EP  - 185
VL  - 189
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_189_2_a1/
LA  - ru
ID  - TMF_2016_189_2_a1
ER  - 
%0 Journal Article
%A A. V. Zotov
%T Higher-order analogues of the unitarity condition for quantum $R$-matrices
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 176-185
%V 189
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2016_189_2_a1/
%G ru
%F TMF_2016_189_2_a1
A. V. Zotov. Higher-order analogues of the unitarity condition for quantum $R$-matrices. Teoretičeskaâ i matematičeskaâ fizika, Tome 189 (2016) no. 2, pp. 176-185. http://geodesic.mathdoc.fr/item/TMF_2016_189_2_a1/

[1] C. N. Yang, Phys. Rev. Lett., 19:23 (1967), 1312–1315 | DOI | MR | Zbl

[2] I. V. Cherednik, TMF, 43:1 (1980), 117–119 | DOI | MR

[3] A. Smirnov, Central Eur. J. Phys., 8:4 (2010), 542–554, arXiv: 0903.1466 | DOI

[4] A. Levin, M. Olshanetsky, A. Zotov, JHEP, 07 (2014), 012, 38 pp., arXiv: 1405.7523 | DOI | MR

[5] A. Antonov, K. Hasegawa, A. Zabrodin, Nucl. Phys. B, 503:3 (1997), 747–770, arXiv: hep-th/9704074 | DOI | MR | Zbl

[6] R. J. Baxter, Ann. Phys., 70:1 (1972), 193–228 | DOI | MR | Zbl

[7] A. A. Belavin, Nucl. Phys. B, 180:2 (1981), 189–200 | DOI | MR | Zbl

[8] A. Veil, Ellipticheskie funktsii po Eizenshteinu i Kronekeru, Mir, M., 1978 | MR | MR | Zbl

[9] A. M. Levin, M. A. Olshanetskii, A. V. Zotov, TMF, 184:1 (2015), 41–56, arXiv: 1501.07351 | DOI | DOI | MR | Zbl

[10] A. Levin, M. Olshanetsky, A. Zotov, J. Phys. A: Math. Theor., 49:1 (2016), 014003, 19 pp., arXiv: 1507.02617 | DOI | MR | Zbl

[11] A. Polishchuk, Adv. Math., 168:1 (2002), 56–95 | DOI | MR | Zbl

[12] A. Levin, M. Olshanetsky, A. Zotov, JHEP, 10 (2014), 109, 28 pp., arXiv: 1408.6246 | DOI | MR | Zbl

[13] V. V. Bazhanov, Yu. G. Stroganov, “On connection between the solutions of the quantum and classical triangle equations”, Trudy mezhdunarodnogo seminara po problemam fiziki vysokikh energii i kvantovoi teorii polya. T. 1 (Protvino, iyul 1983\;g.), In-t fiziki vysokikh energii, Protvino, 1983, 51–53; Л. А. Тахтаджян, Зап. научн. сем. ЛОМИ, 133 (1984), 258–276 | MR | Zbl

[14] J. D. Fay, Theta Functions on Riemann Surfaces, Lecture Notes in Mathematics, 352, Springer, Berlin, 1973 ; Д. Мамфорд, Лекции о тэта-функциях, Мир, М., 1988 | DOI | MR | Zbl | DOI | MR | MR | Zbl

[15] S. Fomin, A. N. Kirillov, Discrete Math., 153:1–3 (1996), 123–143 | DOI | MR | Zbl

[16] S. N. M. Ruijsenaars, Commun. Math. Phys., 110:2 (1987), 191–213 | DOI | MR | Zbl

[17] A. A. Belavin, V. G. Drinfeld, Funkts. analiz i ego pril., 16:3 (1982), 1–29 | DOI | MR | Zbl

[18] I. M. Krichever, Funkts. analiz i ego pril., 14:4 (1980), 45–54 | DOI | MR | Zbl