Construction of eigenfunctions for a system of quantum minors of the monodromy matrix for an $SL(n,\mathbb C)$-invariant spin chain
Teoretičeskaâ i matematičeskaâ fizika, Tome 189 (2016) no. 2, pp. 149-175 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the problem of seeking the eigenvectors for a commuting family of quantum minors of the monodromy matrix for an $SL(n,\mathbb C)$-invariant inhomogeneous spin chain. The algebra generators and elements of the $L$-operator at each site of the chain are implemented as linear differential operators in the space of functions of $n(n{-}1)/2$ variables. In the general case, the representation of the $sl_n(\mathbb C)$ algebra at each site is infinite-dimensional and belongs to the principal unitary series. We solve this problem using a recursive procedure with respect to the rank $n$ of the algebra. We obtain explicit expressions for the eigenvalues and eigenvectors of the commuting family. We consider the particular cases $n=2$ and $n=3$ and also the limit case of the one-site chain in detail.
Keywords: Yang–Baxter equation, intertwining operator, Yangian, separation of variables.
Mots-clés : $R$-matrix
@article{TMF_2016_189_2_a0,
     author = {P. A. Valinevich and S. \`E. Derkachev and P. P. Kulish and E. M. Uvarov},
     title = {Construction of eigenfunctions for a~system of quantum minors of the~monodromy matrix for an~$SL(n,\mathbb C)$-invariant spin chain},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {149--175},
     year = {2016},
     volume = {189},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_189_2_a0/}
}
TY  - JOUR
AU  - P. A. Valinevich
AU  - S. È. Derkachev
AU  - P. P. Kulish
AU  - E. M. Uvarov
TI  - Construction of eigenfunctions for a system of quantum minors of the monodromy matrix for an $SL(n,\mathbb C)$-invariant spin chain
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 149
EP  - 175
VL  - 189
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_189_2_a0/
LA  - ru
ID  - TMF_2016_189_2_a0
ER  - 
%0 Journal Article
%A P. A. Valinevich
%A S. È. Derkachev
%A P. P. Kulish
%A E. M. Uvarov
%T Construction of eigenfunctions for a system of quantum minors of the monodromy matrix for an $SL(n,\mathbb C)$-invariant spin chain
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 149-175
%V 189
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2016_189_2_a0/
%G ru
%F TMF_2016_189_2_a0
P. A. Valinevich; S. È. Derkachev; P. P. Kulish; E. M. Uvarov. Construction of eigenfunctions for a system of quantum minors of the monodromy matrix for an $SL(n,\mathbb C)$-invariant spin chain. Teoretičeskaâ i matematičeskaâ fizika, Tome 189 (2016) no. 2, pp. 149-175. http://geodesic.mathdoc.fr/item/TMF_2016_189_2_a0/

[1] L. I. Takhtadzhyan, L. D. Faddeev, UMN, 34:55(209) (1979), 13–63 | DOI | MR

[2] P. P. Kulish, E. K. Sklyanin, “Quantum spectral transform method. Recent developements”, Integrable Quantum Field Theories, Lecture Notes in Physics, 151, eds. J. Hietarinta, C. Montonen, Springer, New York, 1982, 61–119 | DOI | MR | Zbl

[3] L. D. Faddeev, “How algebraic Bethe ansatz works for integable model”, Symétries quantiques, Les Houches, 1995, eds. A. Connes, K. Gawedzki, J. Zinn-Justin, North Holland, Amsterdam, 1998, 149–211, arXiv: hep-th/9605187 | MR

[4] E. K. Sklyanin, “Quantum inverse scattering method. Selected topics”, Quantum Group and Quantum Integrable Systems, ed. M.-L. Ge, World Sci., Singapore, 1992, 63–97, arXiv: hep-th/9211111 | MR

[5] E. K. Sklyanin, “Separation of variables in the quantum integrable models related to the Yangian $\mathcal Y[sl(3)]$”, Differentsialnaya geometriya, gruppy Li i mekhanika. 13, Zap. nauchn. sem. POMI, 205, Nauka, SPb., 1993, 166–178 | DOI | MR | Zbl

[6] E. K. Sklyanin, Prog. Theor. Phys. Suppl., 118 (1995), 35–60 | DOI | MR | Zbl

[7] R. J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press, London, 1982 | MR | Zbl

[8] R. J. Baxter, Ann. Phys., 70:1 (1972), 193–228 ; 281:1–2 (2000), 187–222 | DOI | MR | Zbl | DOI

[9] L. N. Lipatov, Phys. Lett. B, 309:3–4 (1993), 394–396 | DOI

[10] L. D. Faddeev, G. P. Korchemsky, Phys. Lett. B, 342:1–4 (1995), 311–322 | DOI

[11] H. J. de Vega, L. N. Lipatov, Phys. Rev. D, 64:11 (2001), 114019, 27 pp. | DOI

[12] H. J. de Vega, L. N. Lipatov, Phys. Rev. D, 66:7 (2002), 074013, 24 pp. | DOI

[13] S. É. Derkachov, G. P. Korchemsky, A. N. Manashov, Nucl. Phys. B, 617:1–3 (2001), 375–440, arXiv: hep-th/0107193 | DOI | MR | Zbl

[14] L. N. Lipatov, J. Phys. A: Math. Theor., 42:30 (2009), 304020, 25 pp. | DOI | MR | Zbl

[15] S. É. Derkachov, A. N. Manashov, J. Phys. A: Math. Theor., 47:30 (2014), 305204, arXiv: 1401.7477 | DOI | MR | Zbl

[16] J. M. Maillet, J. Sanchez de Santos, Amer. Math. Soc. Transl. Ser. 2, 201 (2000), 137–178 | MR | Zbl

[17] V. Terras, Lett. Math. Phys., 48:3 (1999), 263–276 | DOI | MR | Zbl

[18] A. I. Molev, Yangiany i klassicheskie algebry Li, MTsNMO, M., 2009 | DOI | MR | Zbl

[19] A. I. Molev, M. L. Nazarov, G. I. Olshanskii, UMN, 51:2(308) (1996), 27–104 | DOI | DOI | MR | Zbl

[20] S. E. Derkachev, A. N. Manashov, Algebra i analiz, 21:4 (2009), 1–94 | DOI | MR | Zbl

[21] M. Nazarov, V. Tarasov, Publ. Res. Inst. Math. Sci., 30:3 (1994), 459–478 | DOI | MR | Zbl

[22] M. Nazarov, V. Tarasov, J. Reine Angew. Math., 496 (1998), 181–212, arXiv: q-alg/9502008 | MR | Zbl

[23] I. M. Gelfand, M. I. Naimark, Unitarnye predstavleniya klassicheskikh grupp, Tr. MIAN SSSR, 36, Izd-vo AN SSSR, M.–L., 1950 | MR | Zbl

[24] M. A. Naimark, Teoriya predstavlenii grupp, Nauka, M., 1976 | MR | MR | Zbl

[25] D. P. Zhelobenko, UMN, 17:1(103) (1962), 27–120 | DOI | MR | Zbl

[26] D. P. Zhelobenko, Kompaktnye gruppy Li i ikh predstavleniya, Nauka, M., 1970 | MR | Zbl

[27] P. P. Kulish, N. Yu. Reshetikhin, “O $GL_3$-invariantnykh resheniyakh uravneniya Yanga–Bakstera i assotsiirovannykh kvantovykh sistemakh”, Voprosy kvantovoi teorii polya i statisticheskoi fiziki. 3, Zap. nauchn. sem. LOMI, 120, Nauka, L., 1982, 92–121 ; P. P. Kulish, N. Yu. Reshetikhin, J. Phys. A: Math. Gen., 16:16 (1983), L591–L596 | MR | DOI | MR | Zbl

[28] P. P. Kulish, N. Yu. Reshetikhin, E. K. Sklyanin, Lett. Math. Phys., 5:5 (1981), 393–403 | DOI | MR | Zbl