“Twisted” rational $r$-matrices and the algebraic Bethe ansatz:
Teoretičeskaâ i matematičeskaâ fizika, Tome 189 (2016) no. 1, pp. 125-146 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct quantum integrable systems associated with the Lie algebra $gl(n)$ and non-skew-symmetric "shifted and twisted" rational $r$-matrices. The obtained models include Gaudin-type models with and without an external magnetic field, $n$-level $(n-1)$-mode Jaynes–Cummings–Dicke-type models in the $\Lambda$-configuration, a vector generalization of Bose–Hubbard dimers, etc. We diagonalize quantum Hamiltonians of the constructed integrable models using a nested Bethe ansatz.
Keywords: integrable system, classical $r$-matrix, algebraic Bethe ansatz.
@article{TMF_2016_189_1_a9,
     author = {T. V. Skrypnyk},
     title = {{\textquotedblleft}Twisted{\textquotedblright} rational $r$-matrices and the algebraic {Bethe} ansatz:},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {125--146},
     year = {2016},
     volume = {189},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_189_1_a9/}
}
TY  - JOUR
AU  - T. V. Skrypnyk
TI  - “Twisted” rational $r$-matrices and the algebraic Bethe ansatz:
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 125
EP  - 146
VL  - 189
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_189_1_a9/
LA  - ru
ID  - TMF_2016_189_1_a9
ER  - 
%0 Journal Article
%A T. V. Skrypnyk
%T “Twisted” rational $r$-matrices and the algebraic Bethe ansatz:
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 125-146
%V 189
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2016_189_1_a9/
%G ru
%F TMF_2016_189_1_a9
T. V. Skrypnyk. “Twisted” rational $r$-matrices and the algebraic Bethe ansatz:. Teoretičeskaâ i matematičeskaâ fizika, Tome 189 (2016) no. 1, pp. 125-146. http://geodesic.mathdoc.fr/item/TMF_2016_189_1_a9/

[1] J. von Delft, D. C. Ralph, Phys. Rep., 345:2–3 (2001), 61–173, arXiv: cond-mat/0101019 | DOI

[2] L. Amico, A. Di Lorenzo, A. Osterloh, Phys. Rev. Lett., 86:25 (2001), 5759–5762 | DOI

[3] J. Links, H.-Q. Zhou, R. H. McKenzie, M. Gould, J. Phys. A, 36:19 (2003), R63–R104 | DOI | MR | Zbl

[4] J. Dukelsky, S. Pittel, G. Sierra, Rev. Modern Phys., 76:3 (2004), 643–662 | DOI | MR | Zbl

[5] R. W. Richardson, N. Sherman, Nucl. Phys., 52 (1964), 221–238 ; 253–268 | DOI | MR | DOI

[6] R. W. Richardson, Phys. Rev., 144:3 (1966), 874–883 ; 154:4 (1967), 1007–1022 | DOI | DOI

[7] J. Links, H.-Q. Zhou, M. D. Gould, R. H. McKenzie, J .Phys. A: Math. Gen., 35:30 (2002), 6459–6469 | DOI | MR | Zbl

[8] B. Errea, J. Dukelsky, G. Ortiz, Phys. Rev. A, 79:5 (2009), 051603, 4 pp. | DOI

[9] V. Z. Enol'skii, M. Salerno, N. A. Kostov, A. C. Scott, Phys. Scr., 43:3 (1991), 229–235 | DOI | MR

[10] J. Links, K. Hibberd, SIGMA, 2 (2006), 095, 8 pp. | DOI | MR | Zbl

[11] E. A. Yuzbashyan, B. L. Altshuler, V. B. Kuznetsov, V. Z. Enolskii, J. Phys. A: Math. Gen., 38:36 (2005), 7831–7849 | DOI | MR | Zbl

[12] M. Bortz, J. Stolze, Phys. Rev. B, 76:1 (2007), 014304, 7 pp. | DOI | MR

[13] M. Gaudin, La fonction d'onde de Bethe, Masson, Paris, 1983 | MR | Zbl

[14] E. K. Sklyanin, “Razdelenie peremennykh v modeli Godena”, Differentsialnaya geometriya, gruppy Li i mekhanika. IX, Zap. nauchn. sem. LOMI, 164, Nauka, L., 1987, 151–169 | DOI | MR | Zbl

[15] B. Jurc̆o, J. Math. Phys., 30:8 (1989), 1739–1743 | DOI | MR | Zbl

[16] O. Babelon, D. Talalaev, J. Stat. Mech. Theory Exp., 6 (2007), P06013, 1 pp. | MR

[17] T. Skrypnyk, J. Phys. A: Math. Theor., 41:47 (2008), 475202, 21 pp. | DOI | MR | Zbl

[18] T. Skrypnyk, J. Math. Phys., 50:10 (2009), 103523, 25 pp. | DOI | MR | Zbl

[19] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | DOI | MR | Zbl

[20] A. A. Belavin, V. G. Drinfeld, Funkts. analiz i ego pril., 16:3 (1982), 1–29 | DOI | MR | Zbl

[21] A. Stolin, Commun. Math. Phys., 141:3 (1991), 533–548 | DOI | MR | Zbl

[22] T. Skrypnyk, J. Geom. Phys., 57:1 (2006), 53–67 | DOI | MR | Zbl

[23] T. Skrypnyk, J. Math. Phys., 48:2 (2007), 023506, 14 pp. | DOI | MR | Zbl

[24] T. Skrypnyk, J. Phys. A: Math. Theor., 40:44 (2007), 13337–13352 | DOI | MR | Zbl

[25] T. Skrypnyk, J. Phys. A: Math. Theor., 43:20 (2010), 205205, 14 pp. | DOI | MR | Zbl

[26] T. Skrypnyk, J. Stat. Mech., 2011:10 (2011), P10009 | DOI

[27] T. Skrypnyk, Nucl. Phys. B, 856:2 (2012), 552–576 | DOI | MR | Zbl

[28] T. Skrypnyk, J. Geom. Phys., 60:3 (2010), 491–500 | DOI | MR | Zbl

[29] T. Skrypnyk, Nucl. Phys. B, 891 (2015), 200–229 | DOI | MR | Zbl

[30] B. Jurc̆o, J. Math. Phys., 30:6 (1989), 1289–1293 | DOI | MR | Zbl

[31] C. N. Yang, Phys. Rev. Lett., 19:23 (1967), 1312–1315 | DOI | MR | Zbl

[32] B. Sutherland, Phys. Rev. B, 12:9 (1975), 3795–3805 | DOI

[33] P. P. Kulish, N. Yu. Reshetikhin, J. Phys. A: Math. Gen., 16:16 (1983), L591–L596 | DOI | MR | Zbl

[34] J. M. Maillet, Phys. Lett. B, 167 (1986), 401 | DOI

[35] O. Babelon, C.-M. Viallet, Phys. Lett. B, 237:3–4 (1990), 411–416 | DOI | MR

[36] J. Avan, M. Talon, Phys. Lett. B, 241:1 (1990), 77–82 | DOI | MR

[37] T. Skrypnyk, J. Geom. Phys., 97 (2015), 133–155 | DOI | MR | Zbl

[38] T. Skrypnyk, J. Math. Phys., 56:2 (2015), 023511, 37 pp. | DOI | MR | Zbl