Approximate symmetries in viscoelasticity
Teoretičeskaâ i matematičeskaâ fizika, Tome 189 (2016) no. 1, pp. 115-124

Voir la notice de l'article provenant de la source Math-Net.Ru

In the framework of approximate symmetries, we investigate a perturbed system of partial differential equations for viscoelastic media with nonlinear dissipation. We completely classify the approximate symmetries and prove a theorem on the relation between the symmetries of two related models. In some physical cases, we find approximate solutions using the generator of the group of transformations taken in the first-order approximation.
Keywords: approximate symmetry, viscoelastic medium
Mots-clés : nonlocal transformation.
@article{TMF_2016_189_1_a8,
     author = {M. Ruggieri and M. P. Speciale},
     title = {Approximate symmetries in viscoelasticity},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {115--124},
     publisher = {mathdoc},
     volume = {189},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_189_1_a8/}
}
TY  - JOUR
AU  - M. Ruggieri
AU  - M. P. Speciale
TI  - Approximate symmetries in viscoelasticity
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 115
EP  - 124
VL  - 189
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_189_1_a8/
LA  - ru
ID  - TMF_2016_189_1_a8
ER  - 
%0 Journal Article
%A M. Ruggieri
%A M. P. Speciale
%T Approximate symmetries in viscoelasticity
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 115-124
%V 189
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2016_189_1_a8/
%G ru
%F TMF_2016_189_1_a8
M. Ruggieri; M. P. Speciale. Approximate symmetries in viscoelasticity. Teoretičeskaâ i matematičeskaâ fizika, Tome 189 (2016) no. 1, pp. 115-124. http://geodesic.mathdoc.fr/item/TMF_2016_189_1_a8/