@article{TMF_2016_189_1_a7,
author = {F. Magri},
title = {Haantjes manifolds and {Veselov} systems},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {101--114},
year = {2016},
volume = {189},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2016_189_1_a7/}
}
F. Magri. Haantjes manifolds and Veselov systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 189 (2016) no. 1, pp. 101-114. http://geodesic.mathdoc.fr/item/TMF_2016_189_1_a7/
[1] A. P. Veselov, Phys. Lett. A, 261:5–6 (1999), 267–302 | DOI | MR
[2] M. V. Feigin, A. P. Veselov, “On the geometry of $\mathrm{V}$-system”, Geometry, Topology, and Mathematical Physics. S. P. Novikov's seminar: 2006–2007, American Mathematical Society Translations. Ser. 2., 224, eds. V. M. Buchstaber, I. M. Krichever, AMS, Providence, RI, 2008, 111–123 | DOI | MR | Zbl
[3] F. Magri, SIGMA, 8 (2012), 076, 7 pp., arXiv: 1210.5320 | DOI | MR | Zbl
[4] S. P. Tsarev, “Integrability of equations of hydrodynamic type from the end of the 19th to the end of the 20th century”, Integrability: the Seiberg–Witten and Whitham equations (Edinburgh, Scotland, UK, 14–19 September, 1998), eds. H. W. Braden, I. M. Krichever, Gordon and Breach, Amsterdam, 2000, 251–265 | MR | Zbl
[5] B. Dubrovin, “Geometry of 2D topological field theory”, Integrable Systems and Quantum Groups, Lectures given at the 1st Session of the Centro Internazionale Matematico Estivo (C.I.M.E.) (Montecatini Terme, Italy, June 14–22, 1993), Lecture Notes in Mathematics, 1620, eds. M. Francaviglia, S. Greco, Springer, Berlin, 1996, 120–348 | DOI | MR | Zbl
[6] Y. Manin, Frobenius Manifolds, Quantum Cohomology, and Moduli Spaces, American Mathematical Society Colloquium Publications, 47, AMS, Providence, RI, 1999 | DOI | MR | Zbl
[7] C. Hertling, Frobenius Manifolds and Moduli Spaces for Singularities, Cambridge Tracts in Mathematics, 151, Cambridge Univ. Press, Cambridge, 2002 | DOI | MR | Zbl