Keywords: Yang–Baxter equation, generalized quantum group, Yang–Baxter map.
@article{TMF_2016_189_1_a6,
author = {A. Kuniba},
title = {Combinatorial {Yang{\textendash}Baxter} maps arising from the~tetrahedron equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {84--100},
year = {2016},
volume = {189},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2016_189_1_a6/}
}
A. Kuniba. Combinatorial Yang–Baxter maps arising from the tetrahedron equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 189 (2016) no. 1, pp. 84-100. http://geodesic.mathdoc.fr/item/TMF_2016_189_1_a6/
[1] A. B. Zamolodchikov, ZhETF, 79:2 (1980), 641–664 | MR
[2] R. J. Baxter, Exactly Solved Models in Statistical Mechanics, Dover, Mineola, NY, 2007 | MR | Zbl
[3] V. V. Bazhanov, S. M. Sergeev, J. Phys. A: Math. Theor., 39:13 (2013), 3295–3310 | DOI | MR
[4] A. Kuniba, S. Sergeev, Commun. Math. Phys., 324:3 (2013), 695–713 | DOI | MR | Zbl
[5] A. Kuniba, M. Okado, Commun. Math. Phys., 334:3 (2013), 1219–1244 | DOI | MR
[6] A. Kuniba, M. Okado, S. Sergeev, J. Phys. A: Math. Theor., 48:30 (2013), 304001, 38 pp. | DOI | MR
[7] M. M. Kapranov, V. A. Voevodsky, “$2$-categories and Zamolodchikov tetrahedron equations”, Algebraic Groups and Their Generalizations: Quantum and Infinite-Dimensional Methods (Pennsylvania State University, University Park, PA, USA, July 6–26, 1991), Proceedings of Symposia in Pure Mathematics, 56, eds. W. J. Haboush, B. J. Parshall, AMS, Providence, RI, 1994, 177–259 | DOI | MR | Zbl
[8] I. Heckenberger, J. Algebra, 323:8 (2010), 2130–2182 | DOI | MR | Zbl
[9] I. Heckenberger, H. Yamane, Rev. Unión Mat. Argentina, 51:2 (2010), 107–146 | MR | Zbl
[10] V. G. Drinfel'd, “Quantum groups”, Proceedings of the International Congress of Mathematicians (ICM) (Berkeley, CA, August 3–11, 1986), ed. A. M. Gleason, AMS, Providence, RI, 1987, 798–820 | MR | Zbl
[11] M. Jimbo, Lett. Math. Phys., 10:1 (1985), 63–69 | DOI | MR | Zbl
[12] A. Nakayashiki, Y. Yamada, Selecta Math. (N. S.), 3:4 (1997), 547–599 | DOI | MR | Zbl
[13] K. Hikami, R. Inoue, J. Phys. A: Math. Gen., 33:22 (2000), 4081–4094 | DOI | MR | Zbl
[14] M. Kashiwara, Duke Math. J., 63:2 (1991), 465–516 | DOI | MR | Zbl
[15] E. Date, M. Jimbo, A. Kuniba, T. Miwa, M. Okado, Lett. Math. Phys., 17:1 (1989), 69–77 | DOI | MR | Zbl
[16] S-J. Kang, M. Kashiwara, K. C. Misra, T. Miwa, T. Nakashima, A. Nakayashiki, Internat. J. Modern Phys. A, 7, suppl. 1A (1992), 449–484 | DOI | MR | Zbl
[17] G. Hatayama, A. Kuniba, M. Okado, T. Takagi, Y. Yamada, “Remarks on fermionic formula”, Recent Developments in Quantum Affine Algebras and Related Topics (North Carolina State University, Raleigh, NC, USA, May 21–24, 1998), Contemporary Mathematics, 248, eds. N. Jing, K. C. Misra, AMS, Providence, RI, 1999, 243–291 | DOI | MR | Zbl
[18] M. Okado, “$X=M$ conjecture”, Combinatorical Aspect of Integrable Systems (RIMS, Kyoto, Japan, July 26–30, 2004), Mathematical Society of Japan Memoirs, 17, eds. A. Kuniba, M. Okado, Math. Soc. Japan, Tokyo, 2007, 43–73 | DOI | MR | Zbl
[19] R. Inoue, A. Kuniba, T. Takagi, J. Phys. A: Math. Theor., 45:7 (2012), 073001, 64 pp. | DOI | MR | Zbl
[20] A. Kuniba, Bethe Ansatz and Combinatorics, Asakura, Tokyo, 2011 (in Japanese)
[21] V. G. Drinfeld, “On some unsolved problems in quantum group theory”, Quantum Groups (Euler International Mathematical Institute, Leningrad, 1990), Lecture Notes in Mathematics, 1510, ed. P. P. Kulish, Springer, Berlin, 1992, 1–8 | DOI | MR | Zbl
[22] A. Veselov, “Yang–Baxter maps: Dynamical point of view”, Combinatorical Aspect of Integrable Systems (RIMS, Kyoto, Japan, July 26–30, 2004), Mathematical Society of Japan Memoirs, 17, eds. A. Kuniba, M. Okado, Math. Soc. Japan, Tokyo, 2007, 145–167 | DOI | MR | Zbl
[23] A. Kuniba, M. Okado, J. Phys. A: Math. Theor., 45:46 (2012), 465206, 27 pp. | DOI | MR | Zbl
[24] A. Kuniba, S. Maruyama, J. Phys. A: Math. Theor., 48:13 (2015), 135204, 19 pp. | DOI | MR | Zbl
[25] S. M. Sergeev, J. Phys. A: Math. Theor., 42:29 (2009), 295206, 19 pp. | DOI | MR | Zbl
[26] G. Benkart, S.-J. Kang, M. Kashiwara, J. Amer. Math. Soc., 13 (2000), 295–331 | DOI | MR | Zbl