@article{TMF_2016_189_1_a5,
author = {G. Gubbiotti and D. Levi and Ch. Scimiterna},
title = {Linearizability and a~fake {Lax} pair for a~nonlinear nonautonomous quad-graph equation consistent around the~cube},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {69--83},
year = {2016},
volume = {189},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2016_189_1_a5/}
}
TY - JOUR AU - G. Gubbiotti AU - D. Levi AU - Ch. Scimiterna TI - Linearizability and a fake Lax pair for a nonlinear nonautonomous quad-graph equation consistent around the cube JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2016 SP - 69 EP - 83 VL - 189 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2016_189_1_a5/ LA - ru ID - TMF_2016_189_1_a5 ER -
%0 Journal Article %A G. Gubbiotti %A D. Levi %A Ch. Scimiterna %T Linearizability and a fake Lax pair for a nonlinear nonautonomous quad-graph equation consistent around the cube %J Teoretičeskaâ i matematičeskaâ fizika %D 2016 %P 69-83 %V 189 %N 1 %U http://geodesic.mathdoc.fr/item/TMF_2016_189_1_a5/ %G ru %F TMF_2016_189_1_a5
G. Gubbiotti; D. Levi; Ch. Scimiterna. Linearizability and a fake Lax pair for a nonlinear nonautonomous quad-graph equation consistent around the cube. Teoretičeskaâ i matematičeskaâ fizika, Tome 189 (2016) no. 1, pp. 69-83. http://geodesic.mathdoc.fr/item/TMF_2016_189_1_a5/
[1] D. Levi, R. Benguria, Proc. Nat. Acad. Sci. USA, 77:9 (1981), 5025–5027 | DOI | MR
[2] J. J. C. Nimmo, W. K. Schief, Proc. Roy. Soc. London Ser. A, 453:1957 (1997), 255–279 | DOI | MR | Zbl
[3] A. Doliwa, P. M. Santini, Phys. Lett. A, 233:4–6 (1997), 365–372 | DOI | MR | Zbl
[4] A. I. Bobenko, Yu. B. Suris, Int. Math. Res. Not., 2002:11 (2002), 573–611 | DOI | MR | Zbl
[5] T. Bridgman, W. Hereman, G. R. W. Quispel, P. H. van der Kamp, Found. Comput. Math., 13:4 (2013), 517–544 | DOI | MR | Zbl
[6] F. W. Nijhoff, Phys. Lett. A, 297:1–2 (2002), 49–58 | DOI | MR | Zbl
[7] F. W. Nijhoff, A. Walker, Glasg. Math. J., 43A (2001), 109–123 | DOI | MR | Zbl
[8] R. Yamilov, J. Phys. A: Math. Gen., 39:45 (2006), R541–R623 | DOI | MR | Zbl
[9] V. E. Adler, A. I. Bobenko, Yu. B. Suris, Commun. Math. Phys., 233:3 (2003), 513–543 | DOI | MR | Zbl
[10] V. E. Adler, A. I. Bobenko, Yu. B. Suris, Funkts. analiz i ego pril., 43:1 (2009), 3–21 | DOI | DOI | MR | Zbl
[11] R. Boll, J. Nonlinear Math. Phys., 18:3 (2011), 337–365 | DOI | MR | Zbl
[12] R. Boll, J. Nonlinear Math. Phys., 19:4 (2012), 1292001, 3 pp. | MR | Zbl
[13] R. Boll, Classification and Lagrangian structure of $3D$ consistent quad-equations, Ph. D. thesis, Technische Universität, Berlin, 2012 | MR | Zbl
[14] J. Hietarinta, C. Viallet, Nonlinearity, 25:7 (2012), 1955–1966 | DOI | MR | Zbl
[15] P. D. Xenitidis, V. G. Papageorgiou, J. Phys. A: Math. Theor., 42:45 (2009), 454025, 13 pp. | DOI | MR | Zbl
[16] G. Gubbiotti, C. Scimiterna, D. Levi, J. Nonlinear Math. Phys., 23:4 (2016), 507–543 | DOI | MR
[17] S. Tremblay, B. Grammaticos, A. Ramani, Phys. Lett. A, 278:6 (2001), 319–324 | DOI | MR | Zbl
[18] C. Viallet, Algebraic entropy for lattice equations, arXiv: math-ph/0609043
[19] G. Gubbiotti, R. I. Yamilov, Darboux integrability of trapezoidal $H^4$ and $H^6$ families of lattice equations I: First integrals, arXiv: 1608.03506
[20] G. Gubbiotti, C. Scimitema, R. I. Yamilov, Darboux integrability of trapezoidal $H^4$ and $H^6$ families of lattice equations II: First integrals (in preparation)
[21] J. Hietarinta, J. Phys. A: Math. Gen., 37:6 (2004), L67–L73 | DOI | MR | Zbl
[22] J. Hietarinta, J. Nonlinear Math. Phys., 12, supp. 2 (2005), 223–230 | DOI | MR | Zbl
[23] A. Ramani, N. Joshi, B. Grammaticos, T. Tamizhmani, J. Phys. A: Math. Gen., 39:8 (2006), L145–L149 | DOI | MR | Zbl
[24] J. Atkinson, J. Phys. A: Math. Theor., 42:45 (2009), 454005, 7 pp. | DOI | MR | Zbl
[25] M. Hay, S. Butler, Simple identification of fake Lax pair, arXiv: 1311.2406
[26] F. Calogero, M. C. Nucci, J. Math. Phys., 32:1 (1991), 72–74 | DOI | MR | Zbl
[27] D. Levi, A. Sym, G. Z. Tu, A working algorithm to isolate integrable surfaces in $E^3$, preprint DF-INFN No 761, INFN, Roma, 1990
[28] Y. Q. Li, B. Li, S. Y. Lou, Constraints for evolution equations with some special forms of Lax pairs and distinguishing Lax pairs by available constraints, arXiv: 1008.1375
[29] M. Marvan, Acta Appl. Math., 72:1–2 (2002), 51–65 | DOI | MR | Zbl
[30] M. Marvan, Acta Appl. Math., 109:1 (2010), 239–255 | DOI | MR | Zbl
[31] M. Marvan, Acta Appl. Math., 83:1–2 (2004), 39–68 | DOI | MR | Zbl
[32] S. Yu. Sakovich, True and fake Lax pairs: how to distinguish them, arXiv: nlin.SI/0112027
[33] S. Yu. Sakovich, Acta Appl. Math., 83:1 (2004), 69–83, arXiv: nlin/0212019 | DOI | MR | Zbl