An integral geometry lemma and its applications: The nonlocality of the Pavlov equation and a tomographic problem with opaque parabolic objects
Teoretičeskaâ i matematičeskaâ fizika, Tome 189 (2016) no. 1, pp. 59-68 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Written in the evolutionary form, the multidimensional integrable dispersionless equations, exactly like the soliton equations in $2{+}1$ dimensions, become nonlocal. In particular, the Pavlov equation is brought to the form $v_t=v_xv_y-\partial^{-1}_x\,\partial_y[v_y+v^2_x]$, where the formal integral $\partial^{-1}_x$ becomes the asymmetric integral $-\int_x^{\infty}dx'$. We show that this result could be guessed using an apparently new integral geometry lemma. It states that the integral of a sufficiently general smooth function $f(X,Y)$ over a parabola in the plane $(X,Y)$ can be expressed in terms of the integrals of $f(X,Y)$ over straight lines not intersecting the parabola. We expect that this result can have applications in two-dimensional linear tomography problems with an opaque parabolic obstacle.
Keywords: dispersionless partial differential equation, scattering transform, Cauchy problem, vector field, Pavlov equation, nonlocality, tomography with an obstacle.
@article{TMF_2016_189_1_a4,
     author = {P. G. Grinevich and P. M. Santini},
     title = {An~integral geometry lemma~and its applications: {The~nonlocality} of {the~Pavlov} equation and a~tomographic problem with opaque parabolic objects},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {59--68},
     year = {2016},
     volume = {189},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_189_1_a4/}
}
TY  - JOUR
AU  - P. G. Grinevich
AU  - P. M. Santini
TI  - An integral geometry lemma and its applications: The nonlocality of the Pavlov equation and a tomographic problem with opaque parabolic objects
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 59
EP  - 68
VL  - 189
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_189_1_a4/
LA  - ru
ID  - TMF_2016_189_1_a4
ER  - 
%0 Journal Article
%A P. G. Grinevich
%A P. M. Santini
%T An integral geometry lemma and its applications: The nonlocality of the Pavlov equation and a tomographic problem with opaque parabolic objects
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 59-68
%V 189
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2016_189_1_a4/
%G ru
%F TMF_2016_189_1_a4
P. G. Grinevich; P. M. Santini. An integral geometry lemma and its applications: The nonlocality of the Pavlov equation and a tomographic problem with opaque parabolic objects. Teoretičeskaâ i matematičeskaâ fizika, Tome 189 (2016) no. 1, pp. 59-68. http://geodesic.mathdoc.fr/item/TMF_2016_189_1_a4/

[1] S. V. Manakov, P. M. Santini, J. Phys.: Conf. Ser., 482:1, 012029, 11 pp., arXiv: 1312.2740 | DOI | MR

[2] S. V. Manakov, P. M. Santini, Inverse scattering problem for vector fields and the heavenly equation, arXiv: nlin/0512043 | MR

[3] S. V. Manakov, P. M. Santini, Phys. Lett. A, 359:6 (2006), 613–619 | DOI | MR | Zbl

[4] S. V. Manakov, P. M. Santini, Pisma v ZhETF, 83:10 (2006), 534–538

[5] S. V. Manakov, P. M. Santini, TMF, 152:1 (2007), 147–156 | DOI | DOI | MR | Zbl

[6] S. V. Manakov, P. M. Santini, J. Phys. A: Math. Theor., 41:5 (2008), 055204, 23 pp. | DOI | MR | Zbl

[7] S. V. Manakov, P. M. Santini, J. Phys. A: Math. Theor., 42:9 (2009), 095203, 16 pp. | DOI | MR | Zbl

[8] P. G. Grinevich, P. M. Santini, D. Wu, Nonlinearity, 28:11 (2015), 3709–3754 | DOI | MR | Zbl

[9] M. V. Pavlov, J. Math. Phys., 44:8 (2003), 4134–4156 | DOI | MR | Zbl

[10] E. V. Ferapontov, K. R. Khusnutdinova, Commun. Math. Phys., 248:1 (2004), 187–206 | DOI | MR | Zbl

[11] M. Dunajski, J. Geom. Phys., 51:1 (2004), 126–137 | DOI | MR | Zbl

[12] M. Dunajski, The nonlinear graviton as an integrable system, PhD thesis, University of Oxford, 1998

[13] P. G. Grinevich, P. M. Santini, Stud. Appl. Math., 137:1 (2016), 10–27, arXiv: 1507.08205 | DOI | MR | Zbl

[14] B. B. Kadomtsev, V. I. Petviashvili, Dokl. AN SSSR, 192:4 (1970), 753–756 | Zbl

[15] C. C. Lin, E. Reissner, H. S. Tien, J. Math. Phys., 27 (1948), 220–231 | DOI | MR | Zbl

[16] R. Timman, “Unsteady motion in transonic flow”, Symposium Transsonicum (Aachen, 3–7 September, 1962), International Union of Theoretical and Applied Mechanics (IUTAM), ed. K. Oswatitsch, Springer, Berlin, 1964, 394–401 | DOI | MR

[17] E. A. Zabolotskaya, R. V. Khokhlov, Akust. zhurn., 15:1 (1969), 40–47

[18] M. J. Ablowitz, J. Villarroel, Stud. Appl. Math., 85:3 (1991), 195–213 | DOI | MR | Zbl

[19] M. Boiti, F. Pempinelli, A. Pogrebkov, Acta Appl. Math., 39:1–3 (1995), 175–192 | DOI | MR | Zbl

[20] A. S. Fokas, L.-Y. Sung, Math. Proc. Cambridge Phil. Soc., 125:1 (1999), 113–138 | DOI | MR | Zbl

[21] A. M. Cormack, J. Appl. Phys., 34:9 (1963), 2722–2727 | DOI | Zbl

[22] F. Natterer, Matematicheskie aspekty kompyuternoi tomografii, Mir, M., 1990 | MR | Zbl

[23] L. Sylow, S. Lie (eds.), Oeuvres complètes de Niels Henrik Abel, Johnson Reprint Corp., New York, 1988 | MR