An~integral geometry lemma~and its applications: The~nonlocality of the~Pavlov equation and a~tomographic problem with opaque parabolic objects
Teoretičeskaâ i matematičeskaâ fizika, Tome 189 (2016) no. 1, pp. 59-68

Voir la notice de l'article provenant de la source Math-Net.Ru

Written in the evolutionary form, the multidimensional integrable dispersionless equations, exactly like the soliton equations in $2{+}1$ dimensions, become nonlocal. In particular, the Pavlov equation is brought to the form $v_t=v_xv_y-\partial^{-1}_x\,\partial_y[v_y+v^2_x]$, where the formal integral $\partial^{-1}_x$ becomes the asymmetric integral $-\int_x^{\infty}dx'$. We show that this result could be guessed using an apparently new integral geometry lemma. It states that the integral of a sufficiently general smooth function $f(X,Y)$ over a parabola in the plane $(X,Y)$ can be expressed in terms of the integrals of $f(X,Y)$ over straight lines not intersecting the parabola. We expect that this result can have applications in two-dimensional linear tomography problems with an opaque parabolic obstacle.
Keywords: dispersionless partial differential equation, scattering transform, Cauchy problem, vector field, Pavlov equation, nonlocality, tomography with an obstacle.
@article{TMF_2016_189_1_a4,
     author = {P. G. Grinevich and P. M. Santini},
     title = {An~integral geometry lemma~and its applications: {The~nonlocality} of {the~Pavlov} equation and a~tomographic problem with opaque parabolic objects},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {59--68},
     publisher = {mathdoc},
     volume = {189},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_189_1_a4/}
}
TY  - JOUR
AU  - P. G. Grinevich
AU  - P. M. Santini
TI  - An~integral geometry lemma~and its applications: The~nonlocality of the~Pavlov equation and a~tomographic problem with opaque parabolic objects
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 59
EP  - 68
VL  - 189
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_189_1_a4/
LA  - ru
ID  - TMF_2016_189_1_a4
ER  - 
%0 Journal Article
%A P. G. Grinevich
%A P. M. Santini
%T An~integral geometry lemma~and its applications: The~nonlocality of the~Pavlov equation and a~tomographic problem with opaque parabolic objects
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 59-68
%V 189
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2016_189_1_a4/
%G ru
%F TMF_2016_189_1_a4
P. G. Grinevich; P. M. Santini. An~integral geometry lemma~and its applications: The~nonlocality of the~Pavlov equation and a~tomographic problem with opaque parabolic objects. Teoretičeskaâ i matematičeskaâ fizika, Tome 189 (2016) no. 1, pp. 59-68. http://geodesic.mathdoc.fr/item/TMF_2016_189_1_a4/