Toward a~classification of quasirational solutions of the~nonlinear
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 189 (2016) no. 1, pp. 48-58
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Based on a representation in terms of determinants of the order $2N$, we attempt to classify quasirational solutions of the one-dimensional focusing nonlinear Schrödinger equation and also formulate several conjectures about the structure of the solutions. The se solutions can be written as a product of a $t$-dependent exponential times a quotient of two $N(N{+}1)$th degree polynomials in $x$ and $t$ depending on $2N{-}2$ parameters. It is remarkable that if all parameters are equal to zero in this representation, then we recover the $P_N$ breathers.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
nonlinear Schrödinger equation, determinant, Peregrine breather
Mots-clés : rogue wave.
                    
                  
                
                
                Mots-clés : rogue wave.
@article{TMF_2016_189_1_a3,
     author = {P. Gaillard},
     title = {Toward a~classification of quasirational solutions of the~nonlinear},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {48--58},
     publisher = {mathdoc},
     volume = {189},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_189_1_a3/}
}
                      
                      
                    P. Gaillard. Toward a~classification of quasirational solutions of the~nonlinear. Teoretičeskaâ i matematičeskaâ fizika, Tome 189 (2016) no. 1, pp. 48-58. http://geodesic.mathdoc.fr/item/TMF_2016_189_1_a3/
