Toward a classification of quasirational solutions of the nonlinear
Teoretičeskaâ i matematičeskaâ fizika, Tome 189 (2016) no. 1, pp. 48-58 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Based on a representation in terms of determinants of the order $2N$, we attempt to classify quasirational solutions of the one-dimensional focusing nonlinear Schrödinger equation and also formulate several conjectures about the structure of the solutions. The se solutions can be written as a product of a $t$-dependent exponential times a quotient of two $N(N{+}1)$th degree polynomials in $x$ and $t$ depending on $2N{-}2$ parameters. It is remarkable that if all parameters are equal to zero in this representation, then we recover the $P_N$ breathers.
Keywords: nonlinear Schrödinger equation, determinant, Peregrine breather
Mots-clés : rogue wave.
@article{TMF_2016_189_1_a3,
     author = {P. Gaillard},
     title = {Toward a~classification of quasirational solutions of the~nonlinear},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {48--58},
     year = {2016},
     volume = {189},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_189_1_a3/}
}
TY  - JOUR
AU  - P. Gaillard
TI  - Toward a classification of quasirational solutions of the nonlinear
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 48
EP  - 58
VL  - 189
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_189_1_a3/
LA  - ru
ID  - TMF_2016_189_1_a3
ER  - 
%0 Journal Article
%A P. Gaillard
%T Toward a classification of quasirational solutions of the nonlinear
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 48-58
%V 189
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2016_189_1_a3/
%G ru
%F TMF_2016_189_1_a3
P. Gaillard. Toward a classification of quasirational solutions of the nonlinear. Teoretičeskaâ i matematičeskaâ fizika, Tome 189 (2016) no. 1, pp. 48-58. http://geodesic.mathdoc.fr/item/TMF_2016_189_1_a3/

[1] L. Draper, Oceanus, 10 (1964), 13–15

[2] V. E. Zakharov, Zhurn. prikl. mekh. i tekhn. fiz., 9:2 (1968), 86–94 | DOI

[3] V. E. Zakharov, A. B. Shabat, ZhETF, 61:1 (1971), 118–134 | MR | MR

[4] H. Peregrine, J. Austral. Math. Soc. Ser. B, 25:1 (1983), 16–43 | DOI | MR | Zbl

[5] N. N. Akhmediev, V. M. Eleonskii, N. E. Kulagin, ZhETF, 89:5 (1985), 1542–1551

[6] N. N. Akhmediev, V. M. Eleonskii, N. E. Kulagin, TMF, 72:2 (1987), 183–196 | DOI | MR | Zbl

[7] N. N. Akhmediev, A. Ankiewicz, J. M. Soto-Crespo, Phys. Rev. E, 80:2 (2009), 026601, 9 pp. | DOI | MR

[8] N. N. Akhmediev, A. Ankiewicz, P. A. Clarkson, J. Phys. A: Math. Theor., 43:12 (2010), 122002, 9 pp. | DOI | MR | Zbl

[9] A. Chabchoub, H. Hoffmann, M. Onorato, N. N. Akhmediev, Phys. Rev. X, 2:1 (2012), 011015, 6 pp. | DOI

[10] P. Dubard, P. Gaillard, C. Klein, V. B. Matveev, Eur. Phys. J. Special Topics, 185:1 (2010), 247–258 | DOI

[11] P. Gaillard, J. Phys. A: Math. Theor., 44:43 (2011), 435204, 15 pp. | DOI | Zbl

[12] B. Guo, L. Ling, Q. P. Liu, Phys. Rev. E, 85:2 (2012), 026607, 9 pp. | DOI | MR

[13] Y. Ohta, J. Yang, Proc. Roy. Soc. Lond. Ser. A, 468:2142 (2012), 1716–1740 | DOI | MR

[14] P. Gaillard, J. Math. Phys., 54:1 (2013), 013504, 32 pp. | DOI | MR | Zbl

[15] L. Ling, L. C. Zhao, Trajectory characters of rogue waves, arXiv: 1305.5599

[16] A. A. Gelash, V. E. Zakharov, Nonlinearity, 27:4 (2014), R1–R39 | DOI | MR

[17] D. J. Kedziora, A. Ankiewicz, N. Akhmediev, Phys. Rev. E, 86:5 (2012), 056602 | DOI

[18] L. Gagnon, P. Winternitz, J. Phys. A: Math. Gen., 21:7 (1988), 1493–1511 | DOI | MR | Zbl

[19] L. Gagnon, P. Winternitz, J. Phys. A: Math. Gen., 22:5 (1989), 469–497 | DOI | MR | Zbl

[20] L. Gagnon, B. Grammaticos, A. Ramani, P. Winternitz, J. Phys. A: Math. Gen., 22:5 (1989), 499–509 | DOI | MR | Zbl

[21] P. Gaillard, Adv. Res., 4:5 (2015), 346–364 | DOI

[22] P. Gaillard, J. Phys. A: Math. Theor., 48:14 (2015), 145203, 23 pp. | DOI | MR | Zbl

[23] P. Gaillard, Phys. Rev. E, 88:5 (2013), 042903, 8 pp. | DOI

[24] P. Gaillard, J. Math. Phys., 54:7 (2014), 073519, 21 pp. | DOI | MR

[25] P. Gaillard, Commun. Theor. Phys., 61:3 (2014), 365–369 | DOI | MR | Zbl

[26] P. Gaillard, Phys. Scr., 89:1 (2014), 015004, 6 pp. | DOI

[27] P. Gaillard, J. Phys.: Conf. Ser., 482:1 (2014), 012016, 8 pp. | DOI

[28] P. Gaillard, J. Math. Phys., 55:9 (2014), 093506, 12 pp. | DOI | MR | Zbl

[29] P. Gaillard, M. Gastineau, Phys. Lett. A, 379:20–21 (2015), 1309–1313 | DOI | MR | Zbl

[30] P. Gaillard, M. Gastineau, Internat. J. Modern Phys. C, 26:2 (2014), 1550016, 14 pp. | DOI | MR

[31] D. J. Kedziora, A. Ankiewicz, N. Akhmediev, Phys. Rev. E, 84:5 (2011), 056611, 7 pp. | DOI

[32] A. Chabchoub, N. Hoffmann, N. Akhmediev, Phys. Rev. Lett., 106:20 (2011), 204502, 4 pp. | DOI

[33] B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, J. M. Dudley, Nature Phys., 6 (2010), 790–795 | DOI

[34] D. J. Kedziora, A. Ankiewicz, N. Akhmediev, Phys. Rev. E, 88:1 (2013), 013207, 12 pp. | DOI

[35] M. Gastineau, J. Laskar, ACM Commun. Comput. Algebra, 44:3/4 (2011), 194–197