Chaos control and function projective synchronization of fractional-order systems through the backstepping method
Teoretičeskaâ i matematičeskaâ fizika, Tome 189 (2016) no. 1, pp. 36-47
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the chaos control and the function projective synchronization of a fractional-order T-system and Lorenz chaotic system using the backstepping method. Based on stability theory, we consider the condition for the local stability of nonlinear three-dimensional commensurate fractional-order system. Using the feedback control method, we control the chaos in the considered fractional-order T-system. We simulate the function projective synchronization between the fractional-order T-system and Lorenz system numerically using MATLAB and depict the results with plots.
Keywords: fractional derivative, chaotic T-system, Lorenz system, backstepping method, feedback control method, Lyapunov stability theory, synchronization.
@article{TMF_2016_189_1_a2,
     author = {S. Das and V. K. Yadav},
     title = {Chaos control and function projective synchronization of fractional-order systems through the~backstepping method},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {36--47},
     year = {2016},
     volume = {189},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_189_1_a2/}
}
TY  - JOUR
AU  - S. Das
AU  - V. K. Yadav
TI  - Chaos control and function projective synchronization of fractional-order systems through the backstepping method
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 36
EP  - 47
VL  - 189
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_189_1_a2/
LA  - ru
ID  - TMF_2016_189_1_a2
ER  - 
%0 Journal Article
%A S. Das
%A V. K. Yadav
%T Chaos control and function projective synchronization of fractional-order systems through the backstepping method
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 36-47
%V 189
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2016_189_1_a2/
%G ru
%F TMF_2016_189_1_a2
S. Das; V. K. Yadav. Chaos control and function projective synchronization of fractional-order systems through the backstepping method. Teoretičeskaâ i matematičeskaâ fizika, Tome 189 (2016) no. 1, pp. 36-47. http://geodesic.mathdoc.fr/item/TMF_2016_189_1_a2/

[1] Y. Chen, X. Li, Internat. J. Modern Phys. C, 18:5 (2007), 883–888 | DOI | MR | Zbl

[2] O. S. Ojoniyi, Int. J. Comp. Science, Eng. Inform. Technology (IJCSEIT), 4:5 (2014), 33–39 | DOI

[3] H. Du, Q. Zeng, C. Wang, M. Ling, Nonlinear Anal. Real World Appl., 11:2 (2010), 705–712 | DOI | MR | Zbl

[4] H. Du, Q. Zeng, C. Wang, Phys. Lett. A, 372:33 (2008), 5402–5410 | DOI | MR | Zbl

[5] C.-L. Zhang, J.-M. Li, Int. J. Automat. Comput., 9:4 (2012), 388–394 | DOI | MR

[6] P. Zhou, W. Zhu, Nonlinear Anal. Real World Appl., 12:2 (2011), 811–816 | DOI | MR | Zbl

[7] Z. Ping, C. Yu-Xia, Chinese Phys. B, 19:10 (2010), 100507 | DOI

[8] S. K. Agrawal, S. Das, J. Process Control, 24:5 (2014), 517–530 | DOI

[9] A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Tquations, North-Holland Mathematics Studies, 204, Elsevier, Amsterdam, 2006 | MR

[10] N. Aguila-Camacho, M. A. Duarte-Mermoud, J. A. Gallegos, Commun. Nonlinear Sci. Numer. Simul., 19:9 (2014), 2951–2957 | DOI | MR

[11] M. R. Faieghi, H. Delavari, Commun. Nonlinear Sci. Numer. Simul., 17:2 (2012), 731–741 | DOI | MR | Zbl

[12] D. Matignon, “Stability results for fractional differential equations with applications to control processing”, Computational Engineering in Systems and Application CESA'96 (Lille, France, July 9–12, 1996), 2, ed. P. Borne, GERF, Ecole Centrale de Lille, Villeneuve-d'Ascq, 1996, 963–968

[13] C. Li, Y. Ma, Nonlinear Dynam., 71:4 (2013), 621–633 | DOI | MR | Zbl

[14] M. Srivastava, S. K. Agrawal, K. Vishal, S. Das, Appl. Math. Model., 38:13 (2014), 3361–3372 | DOI | MR

[15] E. Ahmed, A. M. A. El-Sayed, H. A. A. El-Saka, Phys. Lett. A, 358:1 (2006), 1–4 | DOI | MR | Zbl

[16] G. Tigan, Bul. Ştiinţ. Univ. Politeh. Timiş. Ser. Mat. Fiz., 50(64):1 (2005), 61–72 | MR | Zbl

[17] G. Tigan, “Bifurcation and the stability in a system derived from the Lorenz system”, Proceedings of the Third International Colloquium “Mathematics in Engineering and Numerical Physics” (Bucharest, Romania, October 7–9, 2004), Balkan Society of Geometers, Geometry Balkan Press, Bucharest, 2005, 265–272

[18] X.-J. Wu, S.-L. Shen, Int. J. Comput. Math., 86:7 (2009), 1274–1282 | DOI | MR | Zbl

[19] I. Grigorenko, E. Grigorenko, Phys. Rev. Lett., 91:3 (2003), 034101, 4 pp. | DOI