@article{TMF_2016_189_1_a2,
author = {S. Das and V. K. Yadav},
title = {Chaos control and function projective synchronization of fractional-order systems through the~backstepping method},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {36--47},
year = {2016},
volume = {189},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2016_189_1_a2/}
}
TY - JOUR AU - S. Das AU - V. K. Yadav TI - Chaos control and function projective synchronization of fractional-order systems through the backstepping method JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2016 SP - 36 EP - 47 VL - 189 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2016_189_1_a2/ LA - ru ID - TMF_2016_189_1_a2 ER -
%0 Journal Article %A S. Das %A V. K. Yadav %T Chaos control and function projective synchronization of fractional-order systems through the backstepping method %J Teoretičeskaâ i matematičeskaâ fizika %D 2016 %P 36-47 %V 189 %N 1 %U http://geodesic.mathdoc.fr/item/TMF_2016_189_1_a2/ %G ru %F TMF_2016_189_1_a2
S. Das; V. K. Yadav. Chaos control and function projective synchronization of fractional-order systems through the backstepping method. Teoretičeskaâ i matematičeskaâ fizika, Tome 189 (2016) no. 1, pp. 36-47. http://geodesic.mathdoc.fr/item/TMF_2016_189_1_a2/
[1] Y. Chen, X. Li, Internat. J. Modern Phys. C, 18:5 (2007), 883–888 | DOI | MR | Zbl
[2] O. S. Ojoniyi, Int. J. Comp. Science, Eng. Inform. Technology (IJCSEIT), 4:5 (2014), 33–39 | DOI
[3] H. Du, Q. Zeng, C. Wang, M. Ling, Nonlinear Anal. Real World Appl., 11:2 (2010), 705–712 | DOI | MR | Zbl
[4] H. Du, Q. Zeng, C. Wang, Phys. Lett. A, 372:33 (2008), 5402–5410 | DOI | MR | Zbl
[5] C.-L. Zhang, J.-M. Li, Int. J. Automat. Comput., 9:4 (2012), 388–394 | DOI | MR
[6] P. Zhou, W. Zhu, Nonlinear Anal. Real World Appl., 12:2 (2011), 811–816 | DOI | MR | Zbl
[7] Z. Ping, C. Yu-Xia, Chinese Phys. B, 19:10 (2010), 100507 | DOI
[8] S. K. Agrawal, S. Das, J. Process Control, 24:5 (2014), 517–530 | DOI
[9] A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Tquations, North-Holland Mathematics Studies, 204, Elsevier, Amsterdam, 2006 | MR
[10] N. Aguila-Camacho, M. A. Duarte-Mermoud, J. A. Gallegos, Commun. Nonlinear Sci. Numer. Simul., 19:9 (2014), 2951–2957 | DOI | MR
[11] M. R. Faieghi, H. Delavari, Commun. Nonlinear Sci. Numer. Simul., 17:2 (2012), 731–741 | DOI | MR | Zbl
[12] D. Matignon, “Stability results for fractional differential equations with applications to control processing”, Computational Engineering in Systems and Application CESA'96 (Lille, France, July 9–12, 1996), 2, ed. P. Borne, GERF, Ecole Centrale de Lille, Villeneuve-d'Ascq, 1996, 963–968
[13] C. Li, Y. Ma, Nonlinear Dynam., 71:4 (2013), 621–633 | DOI | MR | Zbl
[14] M. Srivastava, S. K. Agrawal, K. Vishal, S. Das, Appl. Math. Model., 38:13 (2014), 3361–3372 | DOI | MR
[15] E. Ahmed, A. M. A. El-Sayed, H. A. A. El-Saka, Phys. Lett. A, 358:1 (2006), 1–4 | DOI | MR | Zbl
[16] G. Tigan, Bul. Ştiinţ. Univ. Politeh. Timiş. Ser. Mat. Fiz., 50(64):1 (2005), 61–72 | MR | Zbl
[17] G. Tigan, “Bifurcation and the stability in a system derived from the Lorenz system”, Proceedings of the Third International Colloquium “Mathematics in Engineering and Numerical Physics” (Bucharest, Romania, October 7–9, 2004), Balkan Society of Geometers, Geometry Balkan Press, Bucharest, 2005, 265–272
[18] X.-J. Wu, S.-L. Shen, Int. J. Comput. Math., 86:7 (2009), 1274–1282 | DOI | MR | Zbl
[19] I. Grigorenko, E. Grigorenko, Phys. Rev. Lett., 91:3 (2003), 034101, 4 pp. | DOI