Mots-clés : Poisson manifold quantization
@article{TMF_2016_189_1_a0,
author = {F. Bonechi and J. Qiu and M. Tarlini},
title = {A~bi-Hamiltonian system on {the~Grassmannian}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {3--14},
year = {2016},
volume = {189},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2016_189_1_a0/}
}
F. Bonechi; J. Qiu; M. Tarlini. A bi-Hamiltonian system on the Grassmannian. Teoretičeskaâ i matematičeskaâ fizika, Tome 189 (2016) no. 1, pp. 3-14. http://geodesic.mathdoc.fr/item/TMF_2016_189_1_a0/
[1] E. Hawkins, J. Symplectic Geom., 6:1 (2008), 61–125 | DOI | MR | Zbl
[2] F. Bonechi, N. Ciccoli, N. Staffolani, M. Tarlini, J. Geom. Phys., 62:8 (2012), 1851–1865 | DOI | MR | Zbl
[3] F. Bonechi, N. Ciccoli, J. Qiu, M. Tarlini, Commun. Math. Phys., 331:2 (2014), 851–885 | DOI | MR | Zbl
[4] F. Bonechi, Multiplicative integrable models from Poisson–Nijenhuis structures, arXiv: 1507.01500 | MR
[5] S. Khoroshkin, A. Radul, V. Rubtsov, Commun. Math. Phys., 152:2 (1993), 299–315 | DOI | MR | Zbl
[6] F. Bonechi, J. Qiu, M. Tarlini, Complete integrability from Poisson–Nijenhuis structures on compact hermitian symmetric spaces, arXiv: 1503.07339
[7] T. Nishinou, Y. Nohara, K. Ueda, Adv. Math., 224:2 (2010), 648–706 | DOI | MR | Zbl
[8] V. Guillemin, S. Sternberg, J. Funct. Anal., 52:1 (1983), 106–128 | DOI | MR | Zbl
[9] I. Vaisman, Rend. Sem. Mat. Univ. Politec. Torino, 52:4 (1994), 377–394 | MR | Zbl
[10] F. Magri, C. Morosi, A Geometrical Characterization of Hamiltonian Systems Through the Theory of Poisson–Nijenhuis Manifolds, University of Milan, Milan, 1984
[11] V. Chari, A. Pressley, Quantum Groups, Cambridge Univ. Press, Cambridge, 1994 | MR | Zbl
[12] S. Zakrzewski, J. Phys. A: Math. Gen., 30:18 (1997), 6535–6543 | DOI | MR | Zbl
[13] P. Podlés, Publ. Res. Inst. Math. Sci., 28:5 (1992), 709–745 | DOI | MR | Zbl
[14] G. B. Podkolzin, L. I. Vainerman, Pacific J. Math., 188:1 (1999), 179–199 | DOI | MR | Zbl
[15] V. L. Ginzburg, J. Symplectic Geom., 1:1 (2001), 121–170 | DOI | MR