A bi-Hamiltonian system on the Grassmannian
Teoretičeskaâ i matematičeskaâ fizika, Tome 189 (2016) no. 1, pp. 3-14 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Considering the recent result that the Poisson–Nijenhuis geometry corresponds to the quantization of the symplectic groupoid integrating a Poisson manifold, we discuss the Poisson–Nijenhuis structure on the Grassmannian defined by the compatible Kirillov–Kostant–Souriau and Bruhat–Poisson structures. The eigenvalues of the Nijenhuis tensor are Gelfand–Tsetlin variables, which, as was proved, are also in involution with respect to the Bruhat–Poisson structure. Moreover, we show that the Stiefel bundle on the Grassmannian admits a bi-Hamiltonian structure.
Keywords: symplectic geometry, integrable system, Poisson–Nijenhuis geometry, symplectic groupoid.
Mots-clés : Poisson manifold quantization
@article{TMF_2016_189_1_a0,
     author = {F. Bonechi and J. Qiu and M. Tarlini},
     title = {A~bi-Hamiltonian system on {the~Grassmannian}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--14},
     year = {2016},
     volume = {189},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_189_1_a0/}
}
TY  - JOUR
AU  - F. Bonechi
AU  - J. Qiu
AU  - M. Tarlini
TI  - A bi-Hamiltonian system on the Grassmannian
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 3
EP  - 14
VL  - 189
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_189_1_a0/
LA  - ru
ID  - TMF_2016_189_1_a0
ER  - 
%0 Journal Article
%A F. Bonechi
%A J. Qiu
%A M. Tarlini
%T A bi-Hamiltonian system on the Grassmannian
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 3-14
%V 189
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2016_189_1_a0/
%G ru
%F TMF_2016_189_1_a0
F. Bonechi; J. Qiu; M. Tarlini. A bi-Hamiltonian system on the Grassmannian. Teoretičeskaâ i matematičeskaâ fizika, Tome 189 (2016) no. 1, pp. 3-14. http://geodesic.mathdoc.fr/item/TMF_2016_189_1_a0/

[1] E. Hawkins, J. Symplectic Geom., 6:1 (2008), 61–125 | DOI | MR | Zbl

[2] F. Bonechi, N. Ciccoli, N. Staffolani, M. Tarlini, J. Geom. Phys., 62:8 (2012), 1851–1865 | DOI | MR | Zbl

[3] F. Bonechi, N. Ciccoli, J. Qiu, M. Tarlini, Commun. Math. Phys., 331:2 (2014), 851–885 | DOI | MR | Zbl

[4] F. Bonechi, Multiplicative integrable models from Poisson–Nijenhuis structures, arXiv: 1507.01500 | MR

[5] S. Khoroshkin, A. Radul, V. Rubtsov, Commun. Math. Phys., 152:2 (1993), 299–315 | DOI | MR | Zbl

[6] F. Bonechi, J. Qiu, M. Tarlini, Complete integrability from Poisson–Nijenhuis structures on compact hermitian symmetric spaces, arXiv: 1503.07339

[7] T. Nishinou, Y. Nohara, K. Ueda, Adv. Math., 224:2 (2010), 648–706 | DOI | MR | Zbl

[8] V. Guillemin, S. Sternberg, J. Funct. Anal., 52:1 (1983), 106–128 | DOI | MR | Zbl

[9] I. Vaisman, Rend. Sem. Mat. Univ. Politec. Torino, 52:4 (1994), 377–394 | MR | Zbl

[10] F. Magri, C. Morosi, A Geometrical Characterization of Hamiltonian Systems Through the Theory of Poisson–Nijenhuis Manifolds, University of Milan, Milan, 1984

[11] V. Chari, A. Pressley, Quantum Groups, Cambridge Univ. Press, Cambridge, 1994 | MR | Zbl

[12] S. Zakrzewski, J. Phys. A: Math. Gen., 30:18 (1997), 6535–6543 | DOI | MR | Zbl

[13] P. Podlés, Publ. Res. Inst. Math. Sci., 28:5 (1992), 709–745 | DOI | MR | Zbl

[14] G. B. Podkolzin, L. I. Vainerman, Pacific J. Math., 188:1 (1999), 179–199 | DOI | MR | Zbl

[15] V. L. Ginzburg, J. Symplectic Geom., 1:1 (2001), 121–170 | DOI | MR