The~Burgers equation with periodic boundary conditions on an~interval
Teoretičeskaâ i matematičeskaâ fizika, Tome 188 (2016) no. 3, pp. 470-476

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the asymptotic profile of the solutions of the Burgers equation on a finite interval with a periodic perturbation on the boundary. The equation describes a dissipative medium, and the initial constant profile therefore passes into a wave with a decreasing amplitude. In the low-viscosity case, the asymptotic profile looks like a sawtooth wave (with periodic breaks of the derivative), similar to the known Fay solution on the half-line, but it has some new properties.
Keywords: sawtooth wave, initial–boundary value problem, asymptotic behavior.
Mots-clés : invariant solution
@article{TMF_2016_188_3_a7,
     author = {A. V. Samokhin},
     title = {The~Burgers equation with periodic boundary conditions on an~interval},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {470--476},
     publisher = {mathdoc},
     volume = {188},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_188_3_a7/}
}
TY  - JOUR
AU  - A. V. Samokhin
TI  - The~Burgers equation with periodic boundary conditions on an~interval
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 470
EP  - 476
VL  - 188
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_188_3_a7/
LA  - ru
ID  - TMF_2016_188_3_a7
ER  - 
%0 Journal Article
%A A. V. Samokhin
%T The~Burgers equation with periodic boundary conditions on an~interval
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 470-476
%V 188
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2016_188_3_a7/
%G ru
%F TMF_2016_188_3_a7
A. V. Samokhin. The~Burgers equation with periodic boundary conditions on an~interval. Teoretičeskaâ i matematičeskaâ fizika, Tome 188 (2016) no. 3, pp. 470-476. http://geodesic.mathdoc.fr/item/TMF_2016_188_3_a7/