The~Burgers equation with periodic boundary conditions on an~interval
Teoretičeskaâ i matematičeskaâ fizika, Tome 188 (2016) no. 3, pp. 470-476
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the asymptotic profile of the solutions of the Burgers equation on a finite interval with a periodic perturbation on the boundary. The equation describes a dissipative medium, and the initial constant profile therefore passes into a wave with a decreasing amplitude. In the low-viscosity case, the asymptotic profile looks like a sawtooth wave (with periodic breaks of the derivative), similar to the known Fay solution on the half-line, but it has some new properties.
Keywords:
sawtooth wave, initial–boundary value problem,
asymptotic behavior.
Mots-clés : invariant solution
Mots-clés : invariant solution
@article{TMF_2016_188_3_a7,
author = {A. V. Samokhin},
title = {The~Burgers equation with periodic boundary conditions on an~interval},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {470--476},
publisher = {mathdoc},
volume = {188},
number = {3},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2016_188_3_a7/}
}
A. V. Samokhin. The~Burgers equation with periodic boundary conditions on an~interval. Teoretičeskaâ i matematičeskaâ fizika, Tome 188 (2016) no. 3, pp. 470-476. http://geodesic.mathdoc.fr/item/TMF_2016_188_3_a7/