The Burgers equation with periodic boundary conditions on an interval
Teoretičeskaâ i matematičeskaâ fizika, Tome 188 (2016) no. 3, pp. 470-476
Cet article a éte moissonné depuis la source Math-Net.Ru
We study the asymptotic profile of the solutions of the Burgers equation on a finite interval with a periodic perturbation on the boundary. The equation describes a dissipative medium, and the initial constant profile therefore passes into a wave with a decreasing amplitude. In the low-viscosity case, the asymptotic profile looks like a sawtooth wave (with periodic breaks of the derivative), similar to the known Fay solution on the half-line, but it has some new properties.
Keywords:
sawtooth wave, initial–boundary value problem, asymptotic behavior.
Mots-clés : invariant solution
Mots-clés : invariant solution
@article{TMF_2016_188_3_a7,
author = {A. V. Samokhin},
title = {The~Burgers equation with periodic boundary conditions on an~interval},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {470--476},
year = {2016},
volume = {188},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2016_188_3_a7/}
}
A. V. Samokhin. The Burgers equation with periodic boundary conditions on an interval. Teoretičeskaâ i matematičeskaâ fizika, Tome 188 (2016) no. 3, pp. 470-476. http://geodesic.mathdoc.fr/item/TMF_2016_188_3_a7/
[1] R. D. Fay, J. Acoust. Soc. Amer., 3 (1931), 222–241 | DOI | Zbl
[2] D. F. Parker, Proc. Roy. Soc. London Ser. A, 369 (1980), 409–424 | DOI | MR | Zbl
[3] O. V. Rudenko, UFN, 165:9 (1995), 1011–1035 | DOI | DOI
[4] A. Samokhin, J. Geom. Phys., 8 (2014), 177–184 | DOI | MR
[5] B. Dubrovin, M. Elaeva, Russ. J. Math. Phys., 19:4 (2012), 449–460, arXiv: 1301.7216 | DOI | MR | Zbl
[6] B. Dubrovin, Commun. Math. Phys., 267:1 (2006), 117–139 | DOI | MR | Zbl