Ubiquitous symmetries
Teoretičeskaâ i matematičeskaâ fizika, Tome 188 (2016) no. 3, pp. 459-469 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We review some of our recent work devoted to the problem of quantization with preservation of Noether symmetries, finding hidden linearity in superintegrable systems, and showing that nonlocal symmetries are in fact local. In particular, we derive the Schrödinger equation for the isochronous Calogero goldfish model using its relation to Darwin equation. We prove the linearity of a classical superintegrable system on a plane of nonconstant curvature. We find the Lie point symmetries that correspond to the nonlocal symmetries (also reinterpreted as $\lambda$-symmetries) of the Riccati chain.
Keywords: Lie symmetry, Noether symmetry, superintegrability, nonlocal symmetry.
Mots-clés : classical quantization
@article{TMF_2016_188_3_a6,
     author = {M. C. Nucci},
     title = {Ubiquitous symmetries},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {459--469},
     year = {2016},
     volume = {188},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_188_3_a6/}
}
TY  - JOUR
AU  - M. C. Nucci
TI  - Ubiquitous symmetries
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 459
EP  - 469
VL  - 188
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_188_3_a6/
LA  - ru
ID  - TMF_2016_188_3_a6
ER  - 
%0 Journal Article
%A M. C. Nucci
%T Ubiquitous symmetries
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 459-469
%V 188
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2016_188_3_a6/
%G ru
%F TMF_2016_188_3_a6
M. C. Nucci. Ubiquitous symmetries. Teoretičeskaâ i matematičeskaâ fizika, Tome 188 (2016) no. 3, pp. 459-469. http://geodesic.mathdoc.fr/item/TMF_2016_188_3_a6/

[1] M. K. Nuchchi, TMF, 168:1 (2011), 162–170 | DOI | DOI | MR

[2] F. Calogero, Phys. D, 152–153 (2001), 78–84 | DOI | MR | Zbl

[3] E. G. Kalnins, J. M. Kress, P. Winternitz, J. Math. Phys., 43:2 (2002), 970–983 | DOI | MR | Zbl

[4] G. Gubbiotti, M. C. Nucci, Are all classical superintegrable systems in two-dimensional space linearizable?, arXiv: 1602.00705 | MR

[5] W. F. Ames, Nonlinear Ordinary Differential Equations in Transport Processes, Mathematics in Science and Engineering Series, 42, Academic Press, New York, 1968 | Zbl

[6] K. Andriopoulos, P. G. L. Leach, A. Maharaj, Appl. Math. Inf. Sci., 5:3 (2011), 525–546 | MR

[7] C. Muriel, J. L. Romero, Nonlinear Anal. Real World Appl., 16 (2014), 191–201 | DOI | MR | Zbl

[8] D. Schuch, M. Moshinsky, Phys. Rev. A, 73:6 (2006), 062111, 10 pp. | DOI

[9] M. C. Nucci, P. G. L. Leach, K. Andriopoulos, J. Math. Anal. Appl., 319:1 (2006), 357–368 | DOI | MR | Zbl

[10] G. Goldstein, Klassicheskaya mekhanika, Nauka, M., 1975 | MR

[11] M. C. Nucci, P. G. L. Leach, J. Math. Anal. Appl., 406:1 (2013), 219–228 | DOI | MR | Zbl

[12] D. Bjorken, S. D. Drell, Relativistic Quantum Mechanics, 1964, McGraw-Hill, New York | MR

[13] W. H. Louisell, Quantum Statistical Properties of Radiation, John Wiley and Sons, New York, 1990 | MR

[14] H. Weyl, Z. Phys., 46 (1927), 1–46 | DOI | Zbl

[15] M. C. Nucci, J. Phys.: Conf. Ser., 380:1 (2012), 012008, 12 pp. | DOI

[16] M. C. Nucci, J. Nonlinear Math. Phys., 20:3 (2013), 451–463 | DOI | MR

[17] M. C. Nucci, Miskolc Math. Notes, 14:2 (2013), 461–474 | MR | Zbl

[18] M. C. Nucci, J. Phys.: Conf. Ser., 482:1 (2014), 012032, 10 pp. | DOI

[19] G. Sierra, J. Phys. A: Math. Theor., 45:5 (2012), 055209, 28 pp. | DOI | MR | Zbl

[20] G. Gubbiotti, M. C. Nucci, J. Nonlinear Math. Phys., 21:2 (2014), 248–264 | DOI | MR

[21] V. Chithiika Ruby, M. Senthilvelan, M. Lakshmanan, J. Phys. A: Math. Theor., 45:38 (2012), 382002, 10 pp. | DOI | MR | Zbl

[22] G. Gubbiotti, M. C. Nucci, J. Math. Anal. Appl., 422:2 (2015), 1235–1246 | DOI | MR | Zbl

[23] A. G. Choudhury, P. Guha, J. Phys. A: Math. Theor., 46:16 (2013), 165202, 11 pp. | DOI | MR | Zbl

[24] M. C. Nucci, P. G. L. Leach, J. Math. Phys., 48:12 (2007), 123510, 16 pp. | DOI | MR | Zbl

[25] M. C. Nucci, P. G. L. Leach, J. Math. Phys., 49:7 (2008), 073517, 8 pp. | DOI | MR | Zbl

[26] M. C. Nucci, K. M. Tamizhmani, Nuovo Cimento Soc. Ital. Fis. B, 125:3 (2010), 255–269 | DOI | MR

[27] M. C. Nucci, K. M. Tamizhmani, J. Nonlinear Math. Phys., 17:2 (2010), 167–178 | DOI | MR | Zbl

[28] F. González-Gascón, A. González-López, J. Math. Phys., 24:8 (1983), 2006–2021 | DOI | MR | Zbl

[29] A. González-López, J. Math. Phys., 29:5 (1988), 1097–1105 | DOI | MR | Zbl

[30] C. G. Darwin, Proc. Roy. Soc. London Ser. A, 117:776 (1927), 258–293 | DOI | Zbl

[31] F. Calogero, J. Phys. A: Math. Theor., 45:22 (2012), 225203, 16 pp. | DOI | MR | Zbl

[32] F. Calogero, Isochronous Systems, Oxford Univ. Press, Oxford, 2008 | DOI | MR | Zbl

[33] S. Post, P. Winternitz, J. Phys. A: Math. Theor., 44:16 (2011), 162001, 8 pp. | DOI | MR | Zbl

[34] M. C. Nucci, S. Post, J. Phys. A: Math. Theor., 45:48 (2012), 482001, 8 pp. | DOI | MR | Zbl

[35] M. C. Nucci, J. Math. Phys., 37:4 (1996), 1772–1775 | DOI | MR | Zbl

[36] F. Tremblay, A. V. Turbiner, P. Winternitz, J. Phys. A: Math. Theor., 42:24 (2009), 242001, 10 pp. | DOI | MR | Zbl

[37] P. G. L. Leach, J. Math. Anal. Appl., 284:1 (2003), 31–48 | DOI | MR | Zbl

[38] J. Krause, J. Math. Phys., 35:11 (1994), 5734–5748 | DOI | MR | Zbl

[39] M. Euler, N. Euler, P. G. L. Leach, J. Nonlinear Math. Phys., 14:2 (2007), 290–310 | DOI | MR | Zbl

[40] N. Eiler, P. G. L. Lich, TMF, 159:1 (2009), 64–80 | DOI | DOI | MR | Zbl

[41] S. Lie, Vorlesungen über Differentialgleichungen mit bekannten infinitesimalen Transformationen, Teubner, Leipzig, 1912 | Zbl