Ubiquitous symmetries
Teoretičeskaâ i matematičeskaâ fizika, Tome 188 (2016) no. 3, pp. 459-469

Voir la notice de l'article provenant de la source Math-Net.Ru

We review some of our recent work devoted to the problem of quantization with preservation of Noether symmetries, finding hidden linearity in superintegrable systems, and showing that nonlocal symmetries are in fact local. In particular, we derive the Schrödinger equation for the isochronous Calogero goldfish model using its relation to Darwin equation. We prove the linearity of a classical superintegrable system on a plane of nonconstant curvature. We find the Lie point symmetries that correspond to the nonlocal symmetries (also reinterpreted as $\lambda$-symmetries) of the Riccati chain.
Keywords: Lie symmetry, Noether symmetry, superintegrability, nonlocal symmetry.
Mots-clés : classical quantization
@article{TMF_2016_188_3_a6,
     author = {M. C. Nucci},
     title = {Ubiquitous symmetries},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {459--469},
     publisher = {mathdoc},
     volume = {188},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_188_3_a6/}
}
TY  - JOUR
AU  - M. C. Nucci
TI  - Ubiquitous symmetries
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 459
EP  - 469
VL  - 188
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_188_3_a6/
LA  - ru
ID  - TMF_2016_188_3_a6
ER  - 
%0 Journal Article
%A M. C. Nucci
%T Ubiquitous symmetries
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 459-469
%V 188
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2016_188_3_a6/
%G ru
%F TMF_2016_188_3_a6
M. C. Nucci. Ubiquitous symmetries. Teoretičeskaâ i matematičeskaâ fizika, Tome 188 (2016) no. 3, pp. 459-469. http://geodesic.mathdoc.fr/item/TMF_2016_188_3_a6/