Soliton surfaces in the generalized symmetry approach
Teoretičeskaâ i matematičeskaâ fizika, Tome 188 (2016) no. 3, pp. 416-428 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate some features of generalized symmetries of integrable systems aiming to obtain the Fokas–Gel'fand formula for the immersion of two-dimensional soliton surfaces in Lie algebras. We show that if there exists a common symmetry of the zero-curvature representation of an integrable partial differential equation and its linear spectral problem, then the Fokas–Gel'fand immersion formula is applicable in its original form. In the general case, we show that when the symmetry of the zero-curvature representation is not a symmetry of its linear spectral problem, then the immersion function of the two-dimensional surface is determined by an extended formula involving additional terms in the expression for the tangent vectors. We illustrate these results with examples including the elliptic ordinary differential equation and the $\mathbb{C}P^{N-1}$ sigma-model equation.
Keywords: integrable system, generalized symmetry.
Mots-clés : soliton surface, immersion formula
@article{TMF_2016_188_3_a3,
     author = {A. M. Grundland},
     title = {Soliton surfaces in the~generalized symmetry approach},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {416--428},
     year = {2016},
     volume = {188},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_188_3_a3/}
}
TY  - JOUR
AU  - A. M. Grundland
TI  - Soliton surfaces in the generalized symmetry approach
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 416
EP  - 428
VL  - 188
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_188_3_a3/
LA  - ru
ID  - TMF_2016_188_3_a3
ER  - 
%0 Journal Article
%A A. M. Grundland
%T Soliton surfaces in the generalized symmetry approach
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 416-428
%V 188
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2016_188_3_a3/
%G ru
%F TMF_2016_188_3_a3
A. M. Grundland. Soliton surfaces in the generalized symmetry approach. Teoretičeskaâ i matematičeskaâ fizika, Tome 188 (2016) no. 3, pp. 416-428. http://geodesic.mathdoc.fr/item/TMF_2016_188_3_a3/

[1] A. M. Grundland, S. Post, D. Riglioni, J. Phys. A: Math. Theor., 47:1 (2014), 015201, 14 pp. | DOI | MR | Zbl

[2] A. S. Fokas, I. M. Gel'fand, F. Finkel, Q. M. Liu, Selecta Math. (N. S.), 6:4 (2000), 347–375 | DOI | MR | Zbl

[3] A. S. Fokas, I. M. Gelfand, Commun. Math. Phys., 177:1 (1996), 203–220 | DOI | MR | Zbl

[4] A. Sym, Lett. Nuovo Cimento (2), 33:12 (1982), 394–400 | DOI | MR

[5] J. Cieśliński, J. Math. Phys., 38:8 (1997), 4255–4272 | DOI | MR | Zbl

[6] A. Doliwa, A. Sym, “Constant mean curvature surfaces in $E^3$ as an example of soliton surfaces”, Nonlinear Evolution Equations and Dynamical Systems (Baia Verde, Italy, 19–29 June, 1991), eds. M. Boiti, L. Martina, F. Pempinelli, World Sci., Singapore, 1992, 111–117 | MR | Zbl

[7] P. Olver, Prilozhenie grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | MR | MR | Zbl

[8] A. M. Grundland, S. Post, J. Phys. A: Math. Theor., 44:16 (2011), 165203, 31 pp. | DOI | MR | Zbl

[9] A. M. Grundland, S. Post, J. Phys. A: Math. Theor., 45:1 (2012), 015204, 20 pp. | DOI | MR | Zbl

[10] A. Din, W. J. Zakrzewski, Nucl. Phys. B, 174:2–3 (1980), 397–406 | DOI | MR

[11] P. P. Goldstein, A. M. Grundland, J. Phys. A: Math. Theor., 43:26 (2010), 265206, 18 pp. | DOI | MR | Zbl

[12] V. E. Zakharov, A. V. Mikhailov, ZhETF, 74:6 (1978), 1953–1973 | MR