Mots-clés : soliton surface, immersion formula
@article{TMF_2016_188_3_a3,
author = {A. M. Grundland},
title = {Soliton surfaces in the~generalized symmetry approach},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {416--428},
year = {2016},
volume = {188},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2016_188_3_a3/}
}
A. M. Grundland. Soliton surfaces in the generalized symmetry approach. Teoretičeskaâ i matematičeskaâ fizika, Tome 188 (2016) no. 3, pp. 416-428. http://geodesic.mathdoc.fr/item/TMF_2016_188_3_a3/
[1] A. M. Grundland, S. Post, D. Riglioni, J. Phys. A: Math. Theor., 47:1 (2014), 015201, 14 pp. | DOI | MR | Zbl
[2] A. S. Fokas, I. M. Gel'fand, F. Finkel, Q. M. Liu, Selecta Math. (N. S.), 6:4 (2000), 347–375 | DOI | MR | Zbl
[3] A. S. Fokas, I. M. Gelfand, Commun. Math. Phys., 177:1 (1996), 203–220 | DOI | MR | Zbl
[4] A. Sym, Lett. Nuovo Cimento (2), 33:12 (1982), 394–400 | DOI | MR
[5] J. Cieśliński, J. Math. Phys., 38:8 (1997), 4255–4272 | DOI | MR | Zbl
[6] A. Doliwa, A. Sym, “Constant mean curvature surfaces in $E^3$ as an example of soliton surfaces”, Nonlinear Evolution Equations and Dynamical Systems (Baia Verde, Italy, 19–29 June, 1991), eds. M. Boiti, L. Martina, F. Pempinelli, World Sci., Singapore, 1992, 111–117 | MR | Zbl
[7] P. Olver, Prilozhenie grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | MR | MR | Zbl
[8] A. M. Grundland, S. Post, J. Phys. A: Math. Theor., 44:16 (2011), 165203, 31 pp. | DOI | MR | Zbl
[9] A. M. Grundland, S. Post, J. Phys. A: Math. Theor., 45:1 (2012), 015204, 20 pp. | DOI | MR | Zbl
[10] A. Din, W. J. Zakrzewski, Nucl. Phys. B, 174:2–3 (1980), 397–406 | DOI | MR
[11] P. P. Goldstein, A. M. Grundland, J. Phys. A: Math. Theor., 43:26 (2010), 265206, 18 pp. | DOI | MR | Zbl
[12] V. E. Zakharov, A. V. Mikhailov, ZhETF, 74:6 (1978), 1953–1973 | MR