Soliton surfaces in the~generalized symmetry approach
Teoretičeskaâ i matematičeskaâ fizika, Tome 188 (2016) no. 3, pp. 416-428

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate some features of generalized symmetries of integrable systems aiming to obtain the Fokas–Gel'fand formula for the immersion of two-dimensional soliton surfaces in Lie algebras. We show that if there exists a common symmetry of the zero-curvature representation of an integrable partial differential equation and its linear spectral problem, then the Fokas–Gel'fand immersion formula is applicable in its original form. In the general case, we show that when the symmetry of the zero-curvature representation is not a symmetry of its linear spectral problem, then the immersion function of the two-dimensional surface is determined by an extended formula involving additional terms in the expression for the tangent vectors. We illustrate these results with examples including the elliptic ordinary differential equation and the $\mathbb{C}P^{N-1}$ sigma-model equation.
Keywords: integrable system, immersion formula, generalized symmetry.
Mots-clés : soliton surface
@article{TMF_2016_188_3_a3,
     author = {A. M. Grundland},
     title = {Soliton surfaces in the~generalized symmetry approach},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {416--428},
     publisher = {mathdoc},
     volume = {188},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_188_3_a3/}
}
TY  - JOUR
AU  - A. M. Grundland
TI  - Soliton surfaces in the~generalized symmetry approach
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 416
EP  - 428
VL  - 188
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_188_3_a3/
LA  - ru
ID  - TMF_2016_188_3_a3
ER  - 
%0 Journal Article
%A A. M. Grundland
%T Soliton surfaces in the~generalized symmetry approach
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 416-428
%V 188
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2016_188_3_a3/
%G ru
%F TMF_2016_188_3_a3
A. M. Grundland. Soliton surfaces in the~generalized symmetry approach. Teoretičeskaâ i matematičeskaâ fizika, Tome 188 (2016) no. 3, pp. 416-428. http://geodesic.mathdoc.fr/item/TMF_2016_188_3_a3/