The $N$-wave equations with $\mathcal{PT}$ symmetry
Teoretičeskaâ i matematičeskaâ fizika, Tome 188 (2016) no. 3, pp. 397-415 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study extensions of $N$-wave systems with $\mathcal{PT}$ symmetry and describe the types of (nonlocal) reductions leading to integrable equations invariant under the $\mathcal P$ (spatial reflection) and $\mathcal T$ (time reversal) symmetries. We derive the corresponding constraints on the fundamental analytic solutions and the scattering data. Based on examples of three-wave and four-wave systems (related to the respective algebras $sl(3,\mathbb C)$) and $so(5,\mathbb C)$), we discuss the properties of different types of one- and two-soliton solutions. We show that the $\mathcal{PT}$-symmetric three-wave equations can have regular multisoliton solutions for some specific choices of their parameters.
Keywords: integrable system, $\mathcal{PT}$ symmetry, inverse scattering transform
Mots-clés : soliton solution.
@article{TMF_2016_188_3_a2,
     author = {V. S. Gerdjikov and G. G. Grahovski and R. I. Ivanov},
     title = {The~$N$-wave equations with $\mathcal{PT}$ symmetry},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {397--415},
     year = {2016},
     volume = {188},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_188_3_a2/}
}
TY  - JOUR
AU  - V. S. Gerdjikov
AU  - G. G. Grahovski
AU  - R. I. Ivanov
TI  - The $N$-wave equations with $\mathcal{PT}$ symmetry
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 397
EP  - 415
VL  - 188
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_188_3_a2/
LA  - ru
ID  - TMF_2016_188_3_a2
ER  - 
%0 Journal Article
%A V. S. Gerdjikov
%A G. G. Grahovski
%A R. I. Ivanov
%T The $N$-wave equations with $\mathcal{PT}$ symmetry
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 397-415
%V 188
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2016_188_3_a2/
%G ru
%F TMF_2016_188_3_a2
V. S. Gerdjikov; G. G. Grahovski; R. I. Ivanov. The $N$-wave equations with $\mathcal{PT}$ symmetry. Teoretičeskaâ i matematičeskaâ fizika, Tome 188 (2016) no. 3, pp. 397-415. http://geodesic.mathdoc.fr/item/TMF_2016_188_3_a2/

[1] V. E. Zakharov, S. V. Manakov, Tochnaya teoriya rezonansnogo vzaimodeistviya volnovykh paketov v nelineinykh sredakh, Preprint IYaF SOAN SSSR 74-41, Novosibirsk, 1974; В. Е. Захаров, С. В. Manakov, ЖЭТФ, 69:5 (1975), 1654–1673 | MR

[2] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov: metod obratnoi zadachi, Nauka, M., 1980 | MR | Zbl

[3] V. E. Zakharov, A. B. Shabat, Funkts. analiz i ego pril., 8:3 (1974), 43–53 ; 13:3 (1979), 13–22 | DOI | MR | Zbl | DOI | MR | Zbl

[4] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR | Zbl

[5] V. S. Gerdjikov, G. Vilasi, A. B. Yanovski, Integrable Hamiltonian Hierarchies. Spectral and Geometric Methods, Lecture Notes in Physics, 748, Springer, Berlin, 2008 | DOI | MR | Zbl

[6] J. R. Ackerhalt, P. W. Milonni, Phys. Rev. A, 33:5 (1986), 3185–3198 | DOI

[7] E. V. Ferapontov, Diff. Geom. Appl., 5:4 (1995), 335–369 | DOI | MR | Zbl

[8] V. S. Gerdjikov, “Algebraic and analytic aspects of soliton type equations”, The Legacy of the Inverse Scattering Transform in Applied Mathematics (South Hadley, MA, USA, June 17–21, 2001), Contemporary Mathematics, 301, eds. J. Bona, R. Choudhury, D. Kaup, AMS, Providence, RI, 2002, 35–68, arXiv: nlin.SI/0206014 | DOI | MR | Zbl

[9] V. S. Gerdjikov, G. G. Grahovski, N. A. Kostov, J. Phys. A: Math. Gen., 34:44 (2001), 9425–9461, arXiv: nlin.SI/0006001 | DOI | MR | Zbl

[10] V. S. Gerdjikov, G. G. Grahovski, R. I. Ivanov, N. A. Kostov, Inverse Problems, 17:4 (2001), 999–1015, arXiv: nlin.SI/0009034 | DOI | MR | Zbl

[11] V. S. Gerdjikov, G. G. Grahovski, N. A. Kostov, Eur. Phys. J. B, 29:2 (2002), 243–248 | DOI | MR

[12] V. S. Gerdjikov, N. A. Kostov, Phys. Rev. A, 54:5 (1996), 4339–4350 | DOI

[13] V. S. Gerdjikov, N. A. Kostov, T. I. Valchev, SIGMA, 3 (2007), 039, 19 pp., arXiv: nlin.SI/0703002 | DOI | MR | Zbl

[14] E. Ibragimov, A. A. Struthers, D. J. Kaup, J. D. Khaydarov, K. D. Singer, Phys. Rev. E, 59:5 (1999), 6122–6137 | DOI

[15] D. J. Kaup, Stud. Appl. Math., 55:1 (1976), 9–44 | DOI | MR

[16] D. J. Kaup, Stud. Appl. Math., 62:1 (1980), 75–83 | DOI | MR | Zbl

[17] D. J. Kaup, A. Reiman, A. Bers, Rev. Modern Phys., 51:2 (1979), 275–309 | DOI | MR

[18] V. E. Zakharov, Dokl. AN SSSR, 228:6 (1976), 1314–1316 | MR | Zbl

[19] A. A. Zyablovskii, A. P. Vinogradov, A. A. Pukhov, A. V. Dorofeenko, A. A. Lisyanskii, UFN, 184:11 (2014), 1177–1198 | DOI

[20] F. K. Abdullaev, Y. V. Kartashov, V. V. Konotop, D. A. Zezyulin, Phys. Rev. A, 83:4 (2011), 041805, 4 pp. | DOI

[21] I. V. Barashenkov, Phys. Rev. A, 90:4 (2014), 045802, 4 pp. | DOI

[22] I. V. Barashenkov, D. E. Pelinovsky, P. Dubard, J. Phys. A: Math. Theor., 48:32 (2015), 325201, 28 pp. | DOI | MR | Zbl

[23] C. M. Bender, S. Boettcher, Phys. Rev. Lett., 80:24 (1998), 5243–5246 ; C. M. Bender, S. Boettcher, P. N. Meisinger, J. Math. Phys., 40:6 (1999), 2201–2229 | DOI | MR | Zbl | DOI | MR | Zbl

[24] C. M. Bender, Rep. Progr. Phys., 70:6 (2007), 947–1018, arXiv: hep-th/0703096 | DOI | MR

[25] A. Mostafazadeh, J. Math. Phys., 43:1 (2002), 205–214, arXiv: ; 2814–2816, arXiv: ; 3944–3951, arXiv: math-ph/0107001math-ph/0110016math-ph/0203005 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[26] A. Mostafazadeh, J. Math. Phys., 44:3 (2003), 974–989, arXiv: math-ph/0209018 | DOI | MR | Zbl

[27] C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, D. Kip, Nature Phys., 6 (2010), 192–195 | DOI

[28] A. Fring, J. Phys. A: Math. Theor., 40:15 (2007), 4215–4224, arXiv: math-ph/0701036 | DOI | MR | Zbl

[29] A. Fring, Philos. Trans. Roy. Soc. London Ser. A, 371:1989 (2013), 20120046, 18 pp. | DOI | MR | Zbl

[30] M. J. Ablowitz, Z. H. Musslimani, Phys. Rev. Lett., 110:6 (2013), 064105, 5 pp. | DOI

[31] V. S. Gerdjikov, A. Saxena, Complete integrability of nonlocal nonlinear Schrödinger equation, arXiv: 1510.0480 | MR

[32] M. J. Ablowitz, Z. H. Musslimani, Phys. Rev. E, 90:3 (2014), 032912, 5 pp. | DOI

[33] M. J. Ablowitz, Z. H. Musslimani, Nonlinearity, 29:3 (2016), 915–946 | DOI | MR | Zbl

[34] A. V. Mikhailov, Phys. D, 3:1–2 (1981), 73–117 | DOI | Zbl

[35] T. I. Valchev, Phys. Lett. A, 379:34–35 (2015), 1877–1880 | DOI | MR | Zbl

[36] R. Beals, R. R. Coifman, Commun. Pure Appl. Math., 37:1 (1984), 39–90 ; Inverse Problems, 3 (1987), 577–594 | DOI | MR | Zbl | DOI | MR

[37] V. S. Gerdjikov, P. P. Kulish, Phys. D, 3:3 (1981), 549–564 | DOI | MR | Zbl

[38] A. B. Shabat, Funkts. analiz i ego pril., 9:3 (1975), 75–78 ; Дифференц. уравнения, 15:10 (1979), 1824–1834 | DOI | MR | Zbl | MR | Zbl

[39] E. V. Doktorov, S. B. Leble, A Dressing Method in Mathematical Physics, Mathematical Physics Studies, 28, Springer, Dordrecht, 2007 | MR | Zbl

[40] V. S. Gerdjikov, Inverse Problems, 2:1 (1986), 51–74 | DOI | MR | Zbl

[41] V. S. Gerdjikov, A. B. Yanovski, J. Math. Phys., 35:7 (1994), 3687–3725 | DOI | MR | Zbl

[42] S. Helgason, Differential geometry, Lie groups and Symmetric Spaces, Graduate Studies in Mathematics, 34, AMS, Providence, RI, 2001 | DOI | MR | Zbl

[43] G. G. Grahovski, “On the reductions and scattering data for the generalized Zakharov–Shabat systems”, Nonlinear Physics: Theory and Experiment. II (Gallipoli, Italy, June 27 – July 6, 2002), eds. M. J. Ablowitz, M. Boiti, F. Pempinelli, B. Prinari, World Sci., Singapore, 2003, 71–78 ; G. G. Grahovski, M. Condon, J. Nonlinear Math. Phys., 15, suppl. 3 (2008), 197–208, arXiv: 0710.3302 | DOI | MR | Zbl | DOI | MR

[44] R. Ivanov, Nucl. Phys. B, 694:3 (2004), 509–524, arXiv: math-ph/0402031 | DOI | MR | Zbl

[45] V. S. Gerdjikov, A. B. Yanovski, Stud. Appl. Math., 134:2 (2015), 145–180 | DOI | MR | Zbl

[46] V. S. Gerdjikov, D. J. Kaup, N. A. Kostov, T. I. Valchev, J. Phys. A: Math. Theor., 41:31 (2008), 315213, 36 pp. | DOI | MR | Zbl