The~$N$-wave equations with $\mathcal{PT}$ symmetry
Teoretičeskaâ i matematičeskaâ fizika, Tome 188 (2016) no. 3, pp. 397-415
Voir la notice de l'article provenant de la source Math-Net.Ru
We study extensions of $N$-wave systems with $\mathcal{PT}$ symmetry and describe the types of (nonlocal) reductions leading to integrable equations invariant under the $\mathcal P$ (spatial reflection) and $\mathcal T$ (time reversal) symmetries. We derive the corresponding constraints on the fundamental analytic solutions and the scattering data. Based on examples of three-wave and four-wave systems (related to the respective algebras $sl(3,\mathbb C)$) and $so(5,\mathbb C)$), we discuss the properties of different types of one- and two-soliton solutions. We show that the $\mathcal{PT}$-symmetric three-wave equations can have regular multisoliton solutions for some specific choices of their parameters.
Keywords:
integrable system, $\mathcal{PT}$ symmetry, inverse scattering transform,
soliton solution.
@article{TMF_2016_188_3_a2,
author = {V. S. Gerdjikov and G. G. Grahovski and R. I. Ivanov},
title = {The~$N$-wave equations with $\mathcal{PT}$ symmetry},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {397--415},
publisher = {mathdoc},
volume = {188},
number = {3},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2016_188_3_a2/}
}
TY - JOUR
AU - V. S. Gerdjikov
AU - G. G. Grahovski
AU - R. I. Ivanov
TI - The~$N$-wave equations with $\mathcal{PT}$ symmetry
JO - Teoretičeskaâ i matematičeskaâ fizika
PY - 2016
SP - 397
EP - 415
VL - 188
IS - 3
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/TMF_2016_188_3_a2/
LA - ru
ID - TMF_2016_188_3_a2
ER -
V. S. Gerdjikov; G. G. Grahovski; R. I. Ivanov. The~$N$-wave equations with $\mathcal{PT}$ symmetry. Teoretičeskaâ i matematičeskaâ fizika, Tome 188 (2016) no. 3, pp. 397-415. http://geodesic.mathdoc.fr/item/TMF_2016_188_3_a2/