Dispersive deformations of the~Hamiltonian structure of Euler's
Teoretičeskaâ i matematičeskaâ fizika, Tome 188 (2016) no. 3, pp. 386-396

Voir la notice de l'article provenant de la source Math-Net.Ru

Euler's equations for a two-dimensional fluid can be written in the Hamiltonian form, where the Poisson bracket is the Lie–Poisson bracket associated with the Lie algebra of divergence-free vector fields. For the two-dimensional hydrodynamics of ideal fluids, we propose a derivation of the Poisson brackets using a reduction from the bracket associated with the full algebra of vector fields. Taking the results of some recent studies of the deformations of Lie–Poisson brackets of vector fields into account, we investigate the dispersive deformations of the Poisson brackets of Euler's equation: we show that they are trivial up to the second order.
Mots-clés : Euler's equations, Poisson bracket, Poisson vertex algebra.
@article{TMF_2016_188_3_a1,
     author = {M. Casati},
     title = {Dispersive deformations of {the~Hamiltonian} structure of {Euler's}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {386--396},
     publisher = {mathdoc},
     volume = {188},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_188_3_a1/}
}
TY  - JOUR
AU  - M. Casati
TI  - Dispersive deformations of the~Hamiltonian structure of Euler's
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 386
EP  - 396
VL  - 188
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_188_3_a1/
LA  - ru
ID  - TMF_2016_188_3_a1
ER  - 
%0 Journal Article
%A M. Casati
%T Dispersive deformations of the~Hamiltonian structure of Euler's
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 386-396
%V 188
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2016_188_3_a1/
%G ru
%F TMF_2016_188_3_a1
M. Casati. Dispersive deformations of the~Hamiltonian structure of Euler's. Teoretičeskaâ i matematičeskaâ fizika, Tome 188 (2016) no. 3, pp. 386-396. http://geodesic.mathdoc.fr/item/TMF_2016_188_3_a1/