Exhaustive study of the noise-induced phase transition in a stochastic model of self-catalyzed reactions
Teoretičeskaâ i matematičeskaâ fizika, Tome 188 (2016) no. 2, pp. 318-336 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We completely investigate the stationary distribution density in the space of relative concentrations for the three-parameter stochastic Horsthemke–Lefever model of a binary self-catalyzed cyclic chemical reaction with perturbations produced by thermal fluctuations of reagents taken into account. This model is a stationary diffusion random process generated by a stochastic equation with the Stratonovich differential, whose marginal distribution density admits a bifurcation restructuring from the unimodal to the bimodal phase with increasing noise intensity, which is interpreted physically as a dynamical phase transition induced by fluctuations in the system.
Mots-clés : bimodal distribution, bifurcation, diffusion Markov process, Fokker–Planck equation, fluctuationbimodal distribution, bifurcation, diffusion Markov process, Fokker–Planck equation, fluctuation.
Keywords: critical surface, stoichiometric coefficient, stochastic differential equation, chemical kinetics equation, phase diagram, noise-induced phase transition, critical surface, stoichiometric coefficient, stochastic differential equation, chemical kinetics equation, phase diagram, noise-induced phase transition
@article{TMF_2016_188_2_a6,
     author = {T. M. Pham and Yu. P. Virchenko},
     title = {Exhaustive study of the~noise-induced phase transition in a~stochastic model of self-catalyzed reactions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {318--336},
     year = {2016},
     volume = {188},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_188_2_a6/}
}
TY  - JOUR
AU  - T. M. Pham
AU  - Yu. P. Virchenko
TI  - Exhaustive study of the noise-induced phase transition in a stochastic model of self-catalyzed reactions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 318
EP  - 336
VL  - 188
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_188_2_a6/
LA  - ru
ID  - TMF_2016_188_2_a6
ER  - 
%0 Journal Article
%A T. M. Pham
%A Yu. P. Virchenko
%T Exhaustive study of the noise-induced phase transition in a stochastic model of self-catalyzed reactions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 318-336
%V 188
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2016_188_2_a6/
%G ru
%F TMF_2016_188_2_a6
T. M. Pham; Yu. P. Virchenko. Exhaustive study of the noise-induced phase transition in a stochastic model of self-catalyzed reactions. Teoretičeskaâ i matematičeskaâ fizika, Tome 188 (2016) no. 2, pp. 318-336. http://geodesic.mathdoc.fr/item/TMF_2016_188_2_a6/

[1] M. Kimura, T. Ohta, Theoretical Aspects of Population Genetics, Monographs in Population Biology, 4, Princeton Univ. Press, Boston, 1971 | Zbl

[2] L. Arnold, W. Horsthemke, R. Lefever, Z. Phys. B, 29:4 (1978), 367–373 | DOI

[3] T. M. Fam, Yu. P. Virchenko, Nauchnye vedomosti BelGU. Ser. Matem. Fizika, 12(155):31 (2013), 130–146

[4] V. Khorstkhemke, R. Lefevr, Indutsirovannye shumom perekhody: teoriya i primenenie v fizike, khimii i biologii, Mir, M., 1987 | MR | MR | Zbl

[5] J. Smythe, F. Moss, P. V. E. McClintock, Phys. Rev. Lett., 51:12 (1983), 1062–1065 | DOI

[6] P. S. Landa, P. V. E. McClintock, Phys. Rep., 2000:1, 1–80 | DOI | MR

[7] W. Horsthemke, “Noise-induced transitions”, Stochastic Nonlinear Systems in Physics, Chemistry, and Biology (University of Bielefeld, West Germany, October 5–11, 1980), eds. L. Arnold, R. Lefever, Springer, Berlin, 1981, 116–126 | DOI | MR | Zbl

[8] R. Lefever, “Noise-induced transitions in biological systems”, Stochastic Nonlinear Systems in Physics, Chemistry, and Biology (University of Bielefeld, West Germany, October 5–11, 1980), eds. L. Arnold, R. Lefever, Springer, Berlin, 1981, 127–136 | DOI | MR | Zbl

[9] W. Horsthemke, R. Lefever, “Noise-induced transitions”, Noise and Nonlinear Dynamical Systems, v. 2, Theory of Noise-Induced Processes in Special Applications, eds. F. Moss, P. V. E. McClintock, Cambridge Univ. Press, 2009, 179–208 | MR

[10] W. Horsthemke, R. Lefever, Noise-induced transitions: Theory and Applications in Physics, Chemistry and Biology, Springer Series in Synergetics, 15, Springer, Berlin, 2006 | MR

[11] T. M. Fam, Yu. P. Virchenko, Nauchnye vedomosti BelGU. Ser. Matem. Fizika, 26(169):33 (2013), 57–63

[12] T. M., Yu. P. Virchenko, Nauchnye vedomosti BelGU. Ser. Matem. Fizika, 5(176):34 (2014), 103–111

[13] Fam Min Tuan, Yu. P. Virchenko, Nauchnye vedomosti BelGU. Ser. Matem. Fizika, 25(196):37 (2014), 108–118

[14] G. S. Yablonskii, V. I. Bykov, A. N. Gorban, Kineticheskie modeli kataliticheskikh reaktsii, Nauka, Novosibirsk, 1983

[15] V. S. Pugachev, I. N. Sinitsyn, Stokhasticheskie differentsialnye sistemy. Analiz i filtratsiya, Nauka, Novosibirsk, 1990 | MR | MR

[16] R. L. Stratonovich, SIAM J. Control, 4 (1966), 362–371 | DOI | MR

[17] K. Itô, Nagoya Math. J., 1 (1950), 35–47 | DOI | MR | Zbl

[18] N. G. van Kampen, J. Statist. Phys., 24:1 (1981), 175–187 | DOI | MR | Zbl

[19] W. Moon, J. S. Wettlaufer, New J. Phys., 16 (2014), 055017, 14 pp. | DOI

[20] E. Wong, M. Zakai, Ann. Math. Stat., 36 (1965), 1560–1564 | DOI | MR | Zbl

[21] G. Blankenship, G. C. Papanicolaou, SIAM J. Appl. Math., 34:3 (1978), 437–476 | DOI | MR | Zbl

[22] J. Smythe, F. Moss, P. V. E. McClintock, D. Clarkson, Phys. Lett. A., 97:3 (1983), 95–98 | DOI | MR

[23] I. I. Gikhman, A. V. Skorokhod, Stokhasticheskie differentsialnye uravneniya, Naukova dumka, Kiev, 1968 | MR | MR | Zbl

[24] N. V. Laskin, S. V. Peletminskii, V. I. Prikhodko, TMF, 34:2 (1978), 244–255 | DOI | MR

[25] T. M. Fam, Yu. P. Virchenko, Nauchnye vedomosti BelGU. Ser. Matem. Fizika, 11(208):39 (2014), 161–166

[26] Yu. P. Virchenko, N. V. Laskin, “Ogrublennoe opisanie raspredeleniya reshenii uravneniya Lanzhevena”, TMF, 41:3 (1979), 406–417 | DOI | MR

[27] A. N. Tikhonov, A. A. Samarskii, Uravneniya matematicheskoi fiziki, Izd-vo Mosk. un-ta, M., 1999 | MR

[28] J. Elliott, Trans. Amer. Math. Soc., 78 (1955), 406–425 | DOI | MR | Zbl

[29] A. A. Savelov, Ploskie krivye. Cistematika, svoistva, primeneniya, Fizmatgiz, M., 1960 | MR