Lower part of the~spectrum for the~two-dimensional Schr\"odinger operator periodic in one variable and application to quantum dimers
Teoretičeskaâ i matematičeskaâ fizika, Tome 188 (2016) no. 2, pp. 288-317
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the semiclassical asymptotic approximation of the spectrum of the two-dimensional Schrödinger operator with a potential periodic in $x$ and increasing at infinity in $y$. We show that the lower part of the spectrum has a band structure (where bands can overlap) and calculate their widths and dispersion relations between energy and quasimomenta. The key role in the obtained asymptotic approximation is played by librations, i.e., unstable periodic trajectories of the Hamiltonian system with an inverted potential. We also present an effective numerical algorithm for computing the widths of bands and discuss applications to quantum dimers.
Keywords:
periodic Schrödinger operator, spectrum, tunneling effect, spectral band
Mots-clés : dispersion relation.
Mots-clés : dispersion relation.
@article{TMF_2016_188_2_a5,
author = {A. Yu. Anikin and S. Yu. Dobrokhotov and M. I. Katsnel'son},
title = {Lower part of the~spectrum for the~two-dimensional {Schr\"odinger} operator periodic in one variable and application to quantum dimers},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {288--317},
publisher = {mathdoc},
volume = {188},
number = {2},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2016_188_2_a5/}
}
TY - JOUR AU - A. Yu. Anikin AU - S. Yu. Dobrokhotov AU - M. I. Katsnel'son TI - Lower part of the~spectrum for the~two-dimensional Schr\"odinger operator periodic in one variable and application to quantum dimers JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2016 SP - 288 EP - 317 VL - 188 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2016_188_2_a5/ LA - ru ID - TMF_2016_188_2_a5 ER -
%0 Journal Article %A A. Yu. Anikin %A S. Yu. Dobrokhotov %A M. I. Katsnel'son %T Lower part of the~spectrum for the~two-dimensional Schr\"odinger operator periodic in one variable and application to quantum dimers %J Teoretičeskaâ i matematičeskaâ fizika %D 2016 %P 288-317 %V 188 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2016_188_2_a5/ %G ru %F TMF_2016_188_2_a5
A. Yu. Anikin; S. Yu. Dobrokhotov; M. I. Katsnel'son. Lower part of the~spectrum for the~two-dimensional Schr\"odinger operator periodic in one variable and application to quantum dimers. Teoretičeskaâ i matematičeskaâ fizika, Tome 188 (2016) no. 2, pp. 288-317. http://geodesic.mathdoc.fr/item/TMF_2016_188_2_a5/