Lower part of the spectrum for the two-dimensional Schrödinger operator periodic in one variable and application to quantum dimers
Teoretičeskaâ i matematičeskaâ fizika, Tome 188 (2016) no. 2, pp. 288-317 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the semiclassical asymptotic approximation of the spectrum of the two-dimensional Schrödinger operator with a potential periodic in $x$ and increasing at infinity in $y$. We show that the lower part of the spectrum has a band structure (where bands can overlap) and calculate their widths and dispersion relations between energy and quasimomenta. The key role in the obtained asymptotic approximation is played by librations, i.e., unstable periodic trajectories of the Hamiltonian system with an inverted potential. We also present an effective numerical algorithm for computing the widths of bands and discuss applications to quantum dimers.
Keywords: periodic Schrödinger operator, spectrum, tunneling effect, spectral band
Mots-clés : dispersion relation.
@article{TMF_2016_188_2_a5,
     author = {A. Yu. Anikin and S. Yu. Dobrokhotov and M. I. Katsnel'son},
     title = {Lower part of the~spectrum for the~two-dimensional {Schr\"odinger} operator periodic in one variable and application to quantum dimers},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {288--317},
     year = {2016},
     volume = {188},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_188_2_a5/}
}
TY  - JOUR
AU  - A. Yu. Anikin
AU  - S. Yu. Dobrokhotov
AU  - M. I. Katsnel'son
TI  - Lower part of the spectrum for the two-dimensional Schrödinger operator periodic in one variable and application to quantum dimers
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 288
EP  - 317
VL  - 188
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_188_2_a5/
LA  - ru
ID  - TMF_2016_188_2_a5
ER  - 
%0 Journal Article
%A A. Yu. Anikin
%A S. Yu. Dobrokhotov
%A M. I. Katsnel'son
%T Lower part of the spectrum for the two-dimensional Schrödinger operator periodic in one variable and application to quantum dimers
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 288-317
%V 188
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2016_188_2_a5/
%G ru
%F TMF_2016_188_2_a5
A. Yu. Anikin; S. Yu. Dobrokhotov; M. I. Katsnel'son. Lower part of the spectrum for the two-dimensional Schrödinger operator periodic in one variable and application to quantum dimers. Teoretičeskaâ i matematičeskaâ fizika, Tome 188 (2016) no. 2, pp. 288-317. http://geodesic.mathdoc.fr/item/TMF_2016_188_2_a5/

[1] C. Fusco, A. Fasolino, T. Janssen, Eur. Phys. J. B, 31:1 (2003), 95–102 ; E. Pijper, A. Fasolino, Phys. Rev. B, 72:16 (2005), 165328, 5 pp. | DOI | DOI

[2] I. M. Gelfand, Dokl. AN SSSR, 73:6 (1950), 1117–1120 ; М. Г. Крейн, Докл. АН СССР, 73:3 (1950), 445–448 ; М. Рид, Б. Саймон, Методы современной математической физики, т. 4, Анализ операторов, Мир, М., 1982 ; B. Simon, Ann. Phys., 158:2 (1984), 415–420 ; М. М. Скриганов, Тр. МИАН СССР, 171 (1985), 3–122 ; P. Kuchment, Floquet Theory for Partial Differential Equations, Birkhäuser, Basel, 1993 ; Д. В. Косыгин, А. А. Минасов, Я. Г. Синай, УМН, 48:4(292) (1993), 3–130 | MR | Zbl | MR | Zbl | MR | MR | Zbl | DOI | MR | Zbl | MR | MR | DOI | MR | Zbl

[3] B. Helffer, J. Sjöstrand, Commun. Partial Differ. Equations, 9:4 (1984), 337–408 ; Ann. Inst. H. Poincaré Phys. Théor., 42:2 (1985), 127–212 | DOI | MR | Zbl | MR | Zbl

[4] C. Herring, Rev. Modern Phys., 34:4 (1962), 631–645 | DOI | MR

[5] L. D. Landau, E. M. Lifshits, Kurs teoreticheskoi fiziki, v. 3, Kvantovaya mekhanika. Nerelyativistskaya teoriya, Fizmatlit, M., 2004 | MR

[6] E. M. Lifshits, L. P. Pitaevskii, Statisticheskaya fizika. Chast 2. Teoriya kondensirovannogo sostoyaniya, Fizmatlit, M., 2004 | MR | Zbl

[7] A. Martinez, J. Math. Pures App., 66:2 (1987), 195–215 ; Bull. Soc. Math. Fr., 116:2 (1988), 199–229 | MR | Zbl | DOI | MR | Zbl

[8] S. Yu. Dobrokhotov, V. N. Kolokoltsov, V. P. Maslov, TMF, 87:3 (1991), 323–375 | DOI | MR | Zbl

[9] B. Simon, Ann. Math., 120 (1984), 89–118 ; В. П. Маслов, Тр. МИАН, 163 (1984), 150–180 ; С. Ю. Доброхотов, В. Н. Колокольцов, ТМФ, 94:3 (1993), 426–434 ; S. Yu. Dobrokhotov, A. Yu. Anikin, “Tunneling, librations and normal forms in a quantum double well with a magnetic field”, Nonlinear Physical Systems. Spectral Analysis, Stability and Bifurcations, Mechanical Engineering and Solid Mechanics Series, eds. O. N. Kirillov, D. E. Pelinovsky, John Wiley and Sons, Hoboken, NJ; ITSE, London, 2014, 85–110 | DOI | MR | Zbl | MR | Zbl | DOI | MR | Zbl | DOI | MR

[10] J. Brüning, S. Yu. Dobrokhotov, E. S. Semenov, Regul. Chaotic Dyn., 11:2 (2006), 167–180 | DOI | MR | Zbl

[11] A. Yu. Anikin, Russ. J. Math. Phys., 20:1 (2013), 1–10 | DOI | MR | Zbl

[12] M. I. Katsnelson, M. van Schilfgaarde, V. P. Antropov, B. N. Harmon, Phys. Rev. A, 54:6 (1996), 4802–4809 | DOI

[13] I. Bryuning, S. Yu. Dobrokhotov, R. V. Nekrasov, TMF, 175:2 (2013), 206–225 | DOI | DOI | Zbl

[14] E. M. Harrell, Ann. Phys., 119:2 (1979), 351–369 ; A. Outassourt, J. Func. Anal., 72:1 (1987), 65–93 ; M. I. Weinstein, J. B. Keller, SIAM J. Appl. Math., 47:5 (1987), 941–958 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl

[15] E. M. Harrell, Commun. Math. Phys., 60:1 (1978), 73–95 ; Commun. Math. Phys., 75:3 (1980), 239–261 | DOI | MR | Zbl | DOI | MR | Zbl

[16] S. Yu. Slavyanov, Differents. uravneniya, 5:2 (1969), 313–325 ; E. Gildener, A. Patrascioiu, Phys. Rev. D, 16:2 (1977), 423–430 ; A. M. Polyakov, Nucl. Phys. B, 120:3 (1977), 429–456 ; G. Jona-Lasinio, F. Martinelli, E. Scoppola, Commun. Math. Phys., 80:2 (1981), 223–254 ; J. M. Combes, P. Duclos, R. Seiler, J. Func. Anal., 52:2 (1983), 257–301 ; Т. Ф. Панкратова, Докл. АН СССР, 276:4 (1984), 795–798 | Zbl | DOI | DOI | DOI | MR | Zbl | DOI | MR | Zbl | MR

[17] Dzh. U. Milnor, Teoriya Morsa, LKI, M., 2008 ; Г. Зейферт, В. Трельфалль, Вариационное исчисление в целом, РХД, М., 2000 | MR | MR | Zbl

[18] S. V. Bolotin, V. V. Kozlov, PMM, 42:2 (1978), 245–250 ; Вестн. Моск. ун-та. Сер. 1. Матем. Механ., 1980, No 4, 84–89 | DOI | MR | MR | Zbl | Zbl

[19] V. I. Arnold, V. V. Kozlov, A. I. Neishtadt, Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki, Editorial URSS, M., 2002 | DOI | MR | Zbl

[20] A. Anikin, M. Rouleux, “Multidimensional tunneling between potential wells at non degenerate minima”, Days on Diffraction 2014 (St. Petersburg, May 26–30, 2014), eds. O. V. Motygin, A. P. Kiselev, L. I. Goray, A. Ya. Kazakov, A. S. Kirpichnikova, IEEE, New York, 2014, 17–22 | DOI