Geometry of Higgs bundles over elliptic curves related to automorphisms of simple Lie algebras, Calogero–Moser systems, and KZB equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 188 (2016) no. 2, pp. 185-222 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct twisted Calogero–Moser systems with spins as Hitchin systems derived from the Higgs bundles over elliptic curves, where the transition operators are defined by arbitrary finite-order automorphisms of the underlying Lie algebras. We thus obtain a spin generalization of the twisted D'Hoker–Phong and Bordner–Corrigan–Sasaki–Takasaki systems. In addition, we construct the corresponding twisted classical dynamical $r$-matrices and the Knizhnik–Zamolodchikov–Bernard equations related to the automorphisms of Lie algebras.
Keywords: elliptic integrable system, finite-order Lie algebra automorphism, Higgs bundle, Knizhnik–Zamolodchikov–Bernard equation.
@article{TMF_2016_188_2_a0,
     author = {A. M. Levin and M. A. Olshanetsky and A. V. Zotov},
     title = {Geometry of {Higgs} bundles over elliptic curves related to automorphisms of simple {Lie} algebras, {Calogero{\textendash}Moser} systems, and {KZB} equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {185--222},
     year = {2016},
     volume = {188},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_188_2_a0/}
}
TY  - JOUR
AU  - A. M. Levin
AU  - M. A. Olshanetsky
AU  - A. V. Zotov
TI  - Geometry of Higgs bundles over elliptic curves related to automorphisms of simple Lie algebras, Calogero–Moser systems, and KZB equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 185
EP  - 222
VL  - 188
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_188_2_a0/
LA  - ru
ID  - TMF_2016_188_2_a0
ER  - 
%0 Journal Article
%A A. M. Levin
%A M. A. Olshanetsky
%A A. V. Zotov
%T Geometry of Higgs bundles over elliptic curves related to automorphisms of simple Lie algebras, Calogero–Moser systems, and KZB equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 185-222
%V 188
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2016_188_2_a0/
%G ru
%F TMF_2016_188_2_a0
A. M. Levin; M. A. Olshanetsky; A. V. Zotov. Geometry of Higgs bundles over elliptic curves related to automorphisms of simple Lie algebras, Calogero–Moser systems, and KZB equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 188 (2016) no. 2, pp. 185-222. http://geodesic.mathdoc.fr/item/TMF_2016_188_2_a0/

[1] A. J. Bordner, R. Sasaki, K. Takasaki, Progr. Theoret. Phys., 101:3 (1999), 487–518, arXiv: hep-th/9809068 | DOI | MR

[2] E. D'Hoker, D. H. Phong, Nucl. Phys. B, 530:3 (1998), 537–610 ; 611–640, arXiv: hep-th/9804124 | DOI | MR | Zbl | DOI | MR | Zbl

[3] P. Etingof, O. Schiffmann, Commun. Math. Phys., 218:3 (2001), 633–663, arXiv: math/0003109 | DOI | MR | Zbl

[4] L. Fehér, B. G. Pusztai, Nucl. Phys. B, 621:3 (2002), 622–642, arXiv: math/0109132 | DOI | MR | Zbl

[5] A. Gorsky, N. Nekrasov, Elliptic Calogero–Moser system from two dimensional current algebra, arXiv: hep-th/9401021

[6] B. Enriques, V. Rubtsov, Math. Res. Lett., 3:3 (1996), 343–357 | DOI | MR

[7] N. Nekrasov, Commun. Math. Phys., 180:3 (1996), 587–604, arXiv: hep-th/9503157 | DOI | MR

[8] A. M. Levin, M. A. Olshanetsky, A. V. Smirnov, A. V. Zotov, Commun. Math. Phys., 316:1 (2012), 1–44, arXiv: 1006.0702 | DOI | MR | Zbl

[9] A. M. Levin, M. A. Olshanetsky, A. V. Smirnov, A. V. Zotov, J. Geom. Phys., 62:8 (2012), 1810–1850, arXiv: 1007.4127 | DOI | MR | Zbl

[10] H. W. Braden, V. A. Dolgushev, M. A. Olshanetsky, A. V. Zotov, J. Phys. A: Math. Gen., 36:25 (2003), 6979–7000, arXiv: hep-th/0301121 | DOI | MR | Zbl

[11] A. V. Zotov, A. M. Levin, M. A. Olshanetskii, Yu. B. Chernyakov, TMF, 156:2 (2008), 163–183, arXiv: 0710.1072 | DOI | DOI | MR | Zbl

[12] J. Gibbons, T. Hermsen, Phys. D, 11:3 (1984), 337–348 | DOI | MR | Zbl

[13] L.-C. Li, P. Xu, Commun. Math. Phys., 231:2 (2002), 257–286 | DOI | MR | Zbl

[14] S. Wojciechowski, Phys. Lett. A, 111:3 (1985), 101–103 | DOI | MR

[15] P. Etingof, O. Schiffmann, Math. Res. Lett., 8:1–2 (2001), 157–170, arXiv: math/0005282 | DOI | MR | Zbl

[16] J. C. Hurtubise, E. Markman, Commun. Math. Phys., 223:3 (2001), 533–552 | DOI | MR | Zbl

[17] S. P. Kumar, J. Troost, JHEP, 01 (2002), 020, 17 pp., arXiv: hep-th/0112109 | DOI | MR

[18] G. Felder, “The KZB equations on Riemann surfaces”, Symétries Quantiques (Les Houches, 1995), North-Holland, Amsterdam, 1998, 687–725, arXiv: hep-th/9609153 | MR | Zbl

[19] G. Felder, Ch. Wieczerkowski, Commun. Math. Phys., 176:1 (1996), 133–162, arXiv: hep-th/9411004 | DOI | MR

[20] G. Kuroki, T. Takebe, Commun. Math. Phys., 190:1 (1997), 1–56 | DOI | MR | Zbl

[21] A. M. Levin, M. A. Olshanetsky, A. V. Smirnov, A. V. Zotov, SIGMA, 8 (2012), 095, 37 pp., arXiv: 1207.4386 | DOI | MR | Zbl

[22] M. Atiyah, Proc. London Math. Soc., 7:1 (1957), 414–452 | DOI | MR | Zbl

[23] I. N. Bernshtein, O. V. Shvartsman, Funkts. analiz i ego pril., 12:4 (1978), 79–80 | DOI | MR | Zbl

[24] E. Looijenga, Invent. Math., 38:1 (1976), 17–32 | DOI | MR | Zbl

[25] M. S. Narasimhan, C. S. Seshadri, Ann. Math., 82:3 (1965), 540–567 | DOI | MR | Zbl

[26] N. Hitchin, Duke Math. J., 54:1 (1987), 91–114 | DOI | MR | Zbl

[27] V. G. Kats, Funkts. analiz i ego pril., 3:3 (1969), 94–96 | DOI | MR | Zbl

[28] V. G. Kats, Beskonechnomernye algebry Li, Mir, M., 1993 | MR | MR | Zbl

[29] E. B. Vinberg, A. L. Onischik, “Osnovy teorii grupp Li”, Gruppy Li i algebry Li – 1, Itogi nauki i tekhn. Ser. Sovrem. probl. matem. Fundam. napravleniya, 20, VINITI, M., 1988, 5–101 | MR | Zbl

[30] E. Presli, G. Sigal, Gruppy petel, Mir, M., 1990 | MR | Zbl

[31] G. Pappas, M. Rapoport, Adv. Math., 219:1 (2008), 118–198 | DOI | MR | Zbl

[32] A. M. Levin, M. A. Olshanetsky, A. Zotov, Commun. Math. Phys., 236:1 (2003), 93–133, arXiv: nlin/0110045 | DOI | MR | Zbl

[33] G. Felder, K. Gawedzki, A. Kupiainen, Commun. Math. Phys., 117:1 (1988), 127–158 | DOI | MR | Zbl

[34] G. Beitman, A. Erdein, Vysshie transtsendentnye funktsii, v. 2, Funktsii Besselya, funktsii parabolicheskogo tsilindra, ortogonalnye mnogochleny, Nauka, M., 1974 | MR

[35] A. Veil, Ellipticheskie funktsii po Eizenshteinu i Kronekeru, Mir, M., 1978 | MR | MR | Zbl