Solving dynamical equations in general homogeneous isotropic cosmologies with a scalaron
Teoretičeskaâ i matematičeskaâ fizika, Tome 188 (2016) no. 1, pp. 121-157 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider gauge-dependent dynamical equations describing homogeneous isotropic cosmologies coupled to a scalar field $\psi$ (scalaron). For flat cosmologies $(k=0)$, we analyze the gauge-independent equation describing the differential $\chi(\alpha)\equiv\psi'(\alpha)$ of the map of the metric $\alpha$ to the scalaron field $\psi$, which is the main mathematical characteristic of a cosmology and locally defines its portrait in the so-called $\alpha$ version. In the more customary $\psi$ version, the similar equation for the differential of the inverse map $\bar\chi(\psi) \equiv\chi^{-1}(\alpha)$ is solved in an asymptotic approximation for arbitrary potentials $v(\psi)$. In the flat case, $\bar\chi(\psi)$ and $\chi^{-1}(\alpha)$ satisfy first-order differential equations depending only on the logarithmic derivative of the potential, $v'(\psi)/v(\psi)$. If an analytic solution for one of the $\chi$ functions is known, then we can find all characteristics of the cosmological model. In the $\alpha$ version, the full dynamical system is explicitly integrable for $k\ne0$ with any potential $\bar v(\alpha)\equiv v[\psi(\alpha)]$ replacing $v(\psi)$. Until one of the maps, which themselves depend on the potentials, is calculated, no sort of analytic relation between these potentials can be found. Nevertheless, such relations can be found in asymptotic regions or by perturbation theory. If instead of a potential we specify a cosmological portrait, then we can reconstruct the corresponding potential. The main subject here is the mathematical structure of isotropic cosmologies. We also briefly present basic applications to a more rigorous treatment of inflation models in the framework of the $\alpha$ version of the isotropic scalaron cosmology. In particular, we construct an inflationary perturbation expansion for $\chi$. If the conditions for inflation to arise are satisfied, i.e., if $v>0$, $k=0$, $\chi^2<6$, and $\chi(\alpha)$ satisfies a certain boundary condition as $\alpha\to-\infty$, then the expansion is invariant under scaling the potential, and its first terms give the standard inflationary parameters with higher-order corrections.
Keywords: isotropic cosmology, scalar field, dynamical system, integrable model, gauge invariance, inflationary model.
@article{TMF_2016_188_1_a6,
     author = {A. T. Filippov},
     title = {Solving dynamical equations in general homogeneous isotropic cosmologies with a~scalaron},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {121--157},
     year = {2016},
     volume = {188},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_188_1_a6/}
}
TY  - JOUR
AU  - A. T. Filippov
TI  - Solving dynamical equations in general homogeneous isotropic cosmologies with a scalaron
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 121
EP  - 157
VL  - 188
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_188_1_a6/
LA  - ru
ID  - TMF_2016_188_1_a6
ER  - 
%0 Journal Article
%A A. T. Filippov
%T Solving dynamical equations in general homogeneous isotropic cosmologies with a scalaron
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 121-157
%V 188
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2016_188_1_a6/
%G ru
%F TMF_2016_188_1_a6
A. T. Filippov. Solving dynamical equations in general homogeneous isotropic cosmologies with a scalaron. Teoretičeskaâ i matematičeskaâ fizika, Tome 188 (2016) no. 1, pp. 121-157. http://geodesic.mathdoc.fr/item/TMF_2016_188_1_a6/

[1] V. Mukhanov, Physical Foundations of Cosmology, Cambridge Univ. Press, New York, 2005 | MR | Zbl

[2] S. Weinberg, Cosmology, Oxford Univ. Press, Oxford, 2008 | MR | Zbl

[3] D. S. Gorbunov, V. A. Rubakov, Introduction to the Theory of the Early Universe: Cosmological Perturbations and Inflationary Theory, World Sci., Singapore, 2010

[4] A. A. Starobinsky, Phys. Lett. B, 91:1 (1980), 99–102 | DOI

[5] V. F. Mukhanov, G. V. Chibisov, Pisma v ZhETF, 33:10 (1981), 549–553

[6] A. H. Guth, Phys. Rev. D, 23:2 (1981), 347–356 | DOI

[7] A. D. Linde, Phys. Lett. B, 129:3–4 (1983), 177–181 | DOI

[8] A. A. Starobinskii, Pisma v Astron. zhurn., 9:10 (1983), 579–584

[9] L. A. Kofman, A. D. Linde, A. A. Starobinsky, Phys. Lett. B, 157:5–6 (1985), 361–367 | DOI

[10] A. D. Linde, Particle Physics and Inflationary Cosmology, Harwood Acad. Publ., Chur, 1990, arXiv: hep-th/0503203

[11] A. Linde, Prog. Theor. Phys. Suppl., 163 (2006), 295–322, arXiv: hep-th/0503195 | DOI | Zbl

[12] R. Kallosh, “Inflation in string theory”, Inflationary Cosmology, Lecture Notes in Physics, 738, eds. M. Lemoine, J. Martin, P. Peter, Springer, Berlin, 2008, 119–156, arXiv: hep-th/0702059 | DOI | Zbl

[13] V. Mukhanov, Eur. Phys. J. C, 73:7 (2013), 1–6, arXiv: 1303.3925 | DOI

[14] J. Martin, K. Ringeval, V. Vennin, Phys. Dark Univ., 5–6 (2014), 75–235, arXiv: 1303.3787 | DOI

[15] A. Linde, Inflationary cosmology after Planck 2013, arXiv: 1402.0526 | MR

[16] J. Martin, The observational status of cosmic inflation after Planck, arXiv: 1502.05733

[17] Y. Motohashi, A. A. Starobinsky, J. Yokoyama, J. Cosm. Astropart. Phys., 09 (2015), 018, arXiv: 1411.5021 | DOI

[18] M. Libanov, V. Rubakov, Phys. Rev. D, 91:10 (2015), 103515, 11 pp., arXiv: 1502.05897 | DOI | MR

[19] B. Boisseau, H. Giacomini, D. Polarski, A. A. Starobinsky, Bouncing universes in scalar-tensor gravity models admitting negative potentials, J. Cosmol. Astropart. Phys., 7, 2015, 10 pp., arXiv: 1504.07927 | DOI | MR

[20] A. T. Filippov, Modern Phys. Lett. A, 11:21 (1996), 1691–1704 | DOI | MR | Zbl

[21] A. T. Filippov, D. Maison, Class. Quant. Grav., 20:9 (2003), 1779–1786 | DOI | MR | Zbl

[22] A. T. Filippov, TMF, 146:1 (2006), 115–131 | DOI | DOI | MR | Zbl

[23] A. T. Filippov, Some unusual dimensional reductions of gravity: geometric potentials, separation of variables, and static – cosmological duality, arXiv: ; “Many faces of dimensional reduction”, Gribov Memorial Volume. Quarks, Hadrons, and Strong Interactions, Proceedings of the Memorial Workshop Devoted to the 75th Birthday of V. N. Gribov (Budapest, Hungary, May 22–24, 2005), eds. Yu. L. Dokshitzer, P. Levai, J. Nyiri, World. Sci., Singapore, 2006, 510–521 hep-th/0605276 | DOI

[24] V. de Alfaro, A. T. Filippov, TMF, 153:3 (2007), 422–452 | DOI | DOI | MR | Zbl

[25] V. de Alfaro, A. T. Filippov, TMF, 162:1 (2010), 41–68 | DOI | DOI | MR | Zbl

[26] A. T. Filippov, General Properties and some solutions of generalized Einstein–Eddington affine gravity I, arXiv: 1112.3023

[27] A. T. Filippov, TMF, 177:2 (2013), 323–352, arXiv: 1302.6372 | DOI | DOI | Zbl

[28] E. A. Davydov, A. T. Filippov, Gravit. Cosmol., 19:4 (2013), 209–218, arXiv: 1302.6969 | DOI | MR | Zbl

[29] A. T. Filippov, Phys. Part. Nucl. Lett., 11:7 (2014), 844–853 | DOI

[30] A. T. Filippov, “Many faces of scalaron coupled to gravity”, Program of the EU-Italy-Russia@Dubna Round Table (Dubna, 3–5 March, 2014) (unpublished, transparencies available at ) http://theor.jinr.ru

[31] J. E. Lidsey, D. Wands, E. J. Copeland, Phys. Rep., 337:4–5 (2000), 343–492, arXiv: hep-th/9909061 | DOI | MR

[32] M. Kawasaki, M. Yamaguchi, T. Yanagida, Phys. Rev. Lett., 85:17 (2000), 3572–3575, arXiv: hep-ph/0004243 | DOI

[33] S. Ferrara, R. Kallosh, A. Linde, M. Porrati, Phys. Rev. D, 88:8 (2013), 085038, 12 pp., arXiv: 1307.7696 | DOI

[34] R. Kallosh, Planck 2013 and superconformal symmetry, arXiv: 1402.0527

[35] R. Kallosh, A. Linde, Comptes Rendus Physique, 16:10 (2015), 914–927, arXiv: 1503.06785 | DOI

[36] A. T. Filippov, On Einstein–Weyl unified model of dark energy and dark matter, arXiv: 0812.2616

[37] A. T. Filippov, TMF, 163:3 (2010), 430–448 | DOI | DOI | MR | Zbl

[38] A. T. Filippov, “Affine generalizations of gravity in the light of modern cosmology”, Problemy sovremennoi teoreticheskoi i matematicheskoi fiziki. Kalibrovochnye teorii i superstruny, Sbornik statei. K 70-letiyu so dnya rozhdeniya akademika Andreya Alekseevicha Slavnova, Tr. MIAN, 272, MAIK, M., 2011, 117–128 | DOI | MR | Zbl

[39] A. S. Eddington, The Internal Constitution of Stars, Cambridge Univ. Press, Cambridge, 1926 | MR | Zbl

[40] R. H. Fowler, Quart. J. Math., os-2:1 (1931), 259–288 | DOI | Zbl

[41] R. Bellman, Stability Theory of Differential Equations, McGraw-Hill, New York, 1953 | MR | Zbl

[42] L. M. Berkovich, “The generalized Emden–Fowler equation”, Symmetry in Nonlinear Mathematical Physics (Kyiv, Ukraine, July 7–13, 1997), 1, eds. M. Shkil, A. Nikitin, V. Boyko, Institute of Mathematics of the National Academy of Sciences of Ukraine, Kyiv, 1997, 155–163 | MR | Zbl

[43] K. S. Govinder, P. G. L. Leach, J. Nonlinear Math. Phys., 14:3 (2007), 443–461 | DOI | MR | Zbl

[44] G. H. Hardy, Proc. London Math. Soc. Ser. 2, s2-10:1 (1912), 451–468 | DOI | MR | Zbl

[45] R. H. Fowler, Pros. London Math. Soc. Ser. 2, s2-13:1 (1914), 341–371 | DOI | MR

[46] B. Whitt, Phys. Lett. B, 145:3–4 (1984), 176–178 | DOI | MR

[47] J.-L. Lehners, Phys. Rev. D, 91:8 (2015), 083525, 18 pp., arXiv: 1502.00629 | DOI | MR

[48] D. Battefeld, P. Peter, Phys. Rep., 571 (2015), 1–66, arXiv: 1406.2790 | DOI | MR

[49] A. A. Starobinsky, Pisma v ZhETF, 68:10 (1998), 721–726, arXiv: astro-ph/9810431 | DOI

[50] R. Arnowitt, S. Deser, C. W. Misner, “The dynamics of general relativity”, Gravitation: An introduction to Current Research, ed. L. Witten, Wiley, New York, 1962, arXiv: gr-qc/0405109 | MR | Zbl

[51] M. Cavaglià, V. de Alfaro, A. T. Filippov, Internat. J. Modern Phys. D, 4:5 (1995), 661–672, arXiv: gr-qc/9411070 | DOI | MR