Wigner function of a~relativistic particle in a~time-dependent linear potential
Teoretičeskaâ i matematičeskaâ fizika, Tome 188 (2016) no. 1, pp. 76-84

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct phase-space representations for a relativistic particle in both a constant and a time-dependent linear potential. We obtain explicit expressions for the Wigner distribution functions for these systems and find the correct nonrelativistic limit and free-particle limit for these functions. We derive the relativistic dynamical equation governing the time development of the Wigner distribution function and relativistic equation for the Wigner distribution function of stationary states and also calculate the amplitudes of transitions between energy states.
Keywords: relativistic particle, linear potential, Wigner function, dynamical equation.
@article{TMF_2016_188_1_a4,
     author = {Sh. M. Nagiyev},
     title = {Wigner function of a~relativistic particle in a~time-dependent linear potential},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {76--84},
     publisher = {mathdoc},
     volume = {188},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_188_1_a4/}
}
TY  - JOUR
AU  - Sh. M. Nagiyev
TI  - Wigner function of a~relativistic particle in a~time-dependent linear potential
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 76
EP  - 84
VL  - 188
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_188_1_a4/
LA  - ru
ID  - TMF_2016_188_1_a4
ER  - 
%0 Journal Article
%A Sh. M. Nagiyev
%T Wigner function of a~relativistic particle in a~time-dependent linear potential
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 76-84
%V 188
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2016_188_1_a4/
%G ru
%F TMF_2016_188_1_a4
Sh. M. Nagiyev. Wigner function of a~relativistic particle in a~time-dependent linear potential. Teoretičeskaâ i matematičeskaâ fizika, Tome 188 (2016) no. 1, pp. 76-84. http://geodesic.mathdoc.fr/item/TMF_2016_188_1_a4/