Bound states of the Schrödinger operator of a system of three bosons on a lattice
Teoretičeskaâ i matematičeskaâ fizika, Tome 188 (2016) no. 1, pp. 36-48 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the Hamiltonian $H_\mu$ of a system of three identical quantum particles (bosons) moving on a $d$-dimensional lattice $\mathbb Z^d$, $d=1,2$, and coupled by an attractive pairwise contact potential $\mu<0$. We prove that the number of bound states of the corresponding Schrödinger operator $H_\mu(K)$, $K\in\mathbb T^d$, is finite and establish the location and structure of its essential spectrum. We show that the bound state decays exponentially at infinity and that the eigenvalue and the corresponding bound state as functions of the quasimomentum $K\in\mathbb T^d$ are regular.
Keywords: discrete Schrodinger operator, three-particle system, contact coupling, eigenvalue, bound state, essential spectrum, lattice.
@article{TMF_2016_188_1_a2,
     author = {S. N. Lakaev and A. R. Khalmukhamedov and A. M. Khalkhuzhaev},
     title = {Bound states of {the~Schr\"odinger} operator of a~system of three bosons on a~lattice},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {36--48},
     year = {2016},
     volume = {188},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_188_1_a2/}
}
TY  - JOUR
AU  - S. N. Lakaev
AU  - A. R. Khalmukhamedov
AU  - A. M. Khalkhuzhaev
TI  - Bound states of the Schrödinger operator of a system of three bosons on a lattice
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 36
EP  - 48
VL  - 188
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_188_1_a2/
LA  - ru
ID  - TMF_2016_188_1_a2
ER  - 
%0 Journal Article
%A S. N. Lakaev
%A A. R. Khalmukhamedov
%A A. M. Khalkhuzhaev
%T Bound states of the Schrödinger operator of a system of three bosons on a lattice
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 36-48
%V 188
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2016_188_1_a2/
%G ru
%F TMF_2016_188_1_a2
S. N. Lakaev; A. R. Khalmukhamedov; A. M. Khalkhuzhaev. Bound states of the Schrödinger operator of a system of three bosons on a lattice. Teoretičeskaâ i matematičeskaâ fizika, Tome 188 (2016) no. 1, pp. 36-48. http://geodesic.mathdoc.fr/item/TMF_2016_188_1_a2/

[1] K. Winkler, G. Thalhammer, F. Lang, R. Grimm J. H. Denschlag, A. J. Daley, A. Kantian, H. P. Büchler, P. Zoller, Nature, 441 (2006), 853–856 | DOI

[2] L. D. Faddeev, Matematicheskie voprosy kvantovoi teorii rasseyaniya dlya sistemy trekh chastits, Tr. MIAN AN SSSR, 69, Izd-vo AN SSSR, M.-L., 1963 | MR | MR | Zbl

[3] S. P. Merkurev, L. D. Faddeev, Kvantovaya teoriya rasseyaniya dlya sistem neskolkikh chastits, Nauka, M., 1985 | MR | MR | Zbl | Zbl

[4] S. Albeverio, S. N. Lakaev, K. A. Makarov, Lett. Math. Phys., 43:1 (1998), 73–85 | DOI | MR | Zbl

[5] S. Albeverio, S. N. Lakaev, Z. I. Muminov, Ann. Henri Poincaré, 5:4 (2004), 743–772 | MR | Zbl

[6] S. Albeverio, S. N. Lakaev, A. M. Khalkhujaev, Markov Process. Relat. Fields, 18:3 (2012), 387–420 | MR | Zbl

[7] V. Efimov, Phys. Lett. B, 33:8 (1970), 563–564 | DOI

[8] S. N. Lakaev, Funkts. analiz i ego ppil., 27:3 (1993), 15–28 | DOI | MR | Zbl

[9] A. V. Sobolev, Commun. Math. Phys., 156:1 (1993), 101–126 | DOI | MR | Zbl

[10] H. Tamura, “Asymptotics for the number of negative eigenvalues of three-body Schrödinger operators with Efimov effect”, Spectral Scattering Theory and Applications (Tokyo Institute of Technology, Japan, June 30 – July 3, 1992), Advanced Studies in Pure Mathematics, 23, ed. K. Yajima, Math. Soc. Japan, Tokyo, 1994, 311–322 | MR | Zbl

[11] D. R. Yafaev, Matem. sb., 94(136):4(8) (1974), 567–593 | DOI | MR | Zbl

[12] S. A. Vugalter, G. M. Zhislin, TMF, 55:1 (1983), 66–77 | DOI | MR

[13] M. E. Muminov, N. M. Aliev, TMF, 171:3 (2012), 387–403 | DOI | DOI | Zbl

[14] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 4, Analiz operatorov, Mir, M., 1982 | MR | MR

[15] S. N. Lakaev, A. M. Khalkhuzhaev, Sh. S. Lakaev, TMF, 171:3 (2012), 438–451 | DOI | DOI | MR | Zbl

[16] A. A. Pankov, Lecture Notes on Schrödinger Equations, Nova Sci., New York, 2007 | MR | Zbl