A~model of nonautonomous dynamics driven by repeated harmonic interaction
Teoretičeskaâ i matematičeskaâ fizika, Tome 187 (2016) no. 3, pp. 531-559
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider an exactly solvable model of nonautonomous $W^*$-dynamics driven by repeated harmonic interaction. The dynamics is Hamiltonian and quasifree. Because of inelastic interaction in the large-time limit, it leads to relaxation of initial states to steady states. We derive the explicit entropy production rate accompanying this relaxation. We also study the evolution of different subsystems to elucidate their eventual correlations and convergence to equilibriums. In conclusion, we prove that the $W^*$-dynamics manifests a universal stationary behavior in a short-time interaction limit.
Keywords:
$W^*$-dynamics, repeated perturbation.
@article{TMF_2016_187_3_a8,
author = {V. A. Zagrebnov and H. Tamura},
title = {A~model of nonautonomous dynamics driven by repeated harmonic interaction},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {531--559},
publisher = {mathdoc},
volume = {187},
number = {3},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2016_187_3_a8/}
}
TY - JOUR AU - V. A. Zagrebnov AU - H. Tamura TI - A~model of nonautonomous dynamics driven by repeated harmonic interaction JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2016 SP - 531 EP - 559 VL - 187 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2016_187_3_a8/ LA - ru ID - TMF_2016_187_3_a8 ER -
V. A. Zagrebnov; H. Tamura. A~model of nonautonomous dynamics driven by repeated harmonic interaction. Teoretičeskaâ i matematičeskaâ fizika, Tome 187 (2016) no. 3, pp. 531-559. http://geodesic.mathdoc.fr/item/TMF_2016_187_3_a8/