A model of nonautonomous dynamics driven by repeated harmonic interaction
Teoretičeskaâ i matematičeskaâ fizika, Tome 187 (2016) no. 3, pp. 531-559 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider an exactly solvable model of nonautonomous $W^*$-dynamics driven by repeated harmonic interaction. The dynamics is Hamiltonian and quasifree. Because of inelastic interaction in the large-time limit, it leads to relaxation of initial states to steady states. We derive the explicit entropy production rate accompanying this relaxation. We also study the evolution of different subsystems to elucidate their eventual correlations and convergence to equilibriums. In conclusion, we prove that the $W^*$-dynamics manifests a universal stationary behavior in a short-time interaction limit.
Keywords: $W^*$-dynamics, repeated perturbation.
@article{TMF_2016_187_3_a8,
     author = {V. A. Zagrebnov and H. Tamura},
     title = {A~model of nonautonomous dynamics driven by repeated harmonic interaction},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {531--559},
     year = {2016},
     volume = {187},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_187_3_a8/}
}
TY  - JOUR
AU  - V. A. Zagrebnov
AU  - H. Tamura
TI  - A model of nonautonomous dynamics driven by repeated harmonic interaction
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 531
EP  - 559
VL  - 187
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_187_3_a8/
LA  - ru
ID  - TMF_2016_187_3_a8
ER  - 
%0 Journal Article
%A V. A. Zagrebnov
%A H. Tamura
%T A model of nonautonomous dynamics driven by repeated harmonic interaction
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 531-559
%V 187
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2016_187_3_a8/
%G ru
%F TMF_2016_187_3_a8
V. A. Zagrebnov; H. Tamura. A model of nonautonomous dynamics driven by repeated harmonic interaction. Teoretičeskaâ i matematičeskaâ fizika, Tome 187 (2016) no. 3, pp. 531-559. http://geodesic.mathdoc.fr/item/TMF_2016_187_3_a8/

[1] H. Tamura, V. A. Zagrebnov, A dynamics driven by repeated harmonic perturbations, arXiv: 1404.2998

[2] B. Nachtergaele, A. Vershynina, V. A. Zagrebnov, Ann. Henri Poincaré, 15:2 (2014), 213–262, arXiv: 1206.6169 | DOI | MR | Zbl

[3] L. Bruneau, A. Joye, M. Merkli, J. Math. Phys., 55:7 (2014), 075204, 67 pp., arXiv: 1305.2472 | DOI | MR | Zbl

[4] O. Bratteli, D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics 2. Equilibrium States. Models in Quantum Statistical Mechanics, Springer, Berlin, 1997 | DOI | MR | Zbl

[5] V. A. Zagrebnov, Topics in the Theory of Gibbs Semigroups, Leuven Notes in Mathematical and Theoretical Physics. Ser. A: Mathematical Physics, 10, KU Leuven Univ. Press, Leuven, 2003 | MR | Zbl

[6] S. Attal, A. Joye, C.-A. Pillet (eds.), Open Quantum Systems I. The Hamiltonian Approach (Grenoble, France June 16 – July 4, 2003), Lecture Notes in Mathematics, 1880, Springer, Berlin, 2006 | MR | Zbl

[7] A. F. Verbeure, Many-Body Boson Systems. Half a Century Later, Springer, Berlin, 2011 | DOI | MR | Zbl

[8] M. Fannes, Ann. Inst. Henri Poincaré Sect. A (N. S.), 28:2 (1978), 187–196 | MR

[9] H. Araki, Publ. Res. Inst. Math. Sci., 11:3 (1976), 809–833 | DOI | MR | Zbl

[10] S. Attal, A. Joye, C.-A. Pillet (eds.), Open Quantum Systems III. Recent Developements (Grenoble, France June 16 – July 4, 2003), Lecture Notes in Mathematics, 1882, Springer, Berlin, 2006 | MR

[11] S. Attal, Y. Pautrat, Ann. Inst. Henri Poincaré, 7:1 (2006), 59–104 | DOI | MR | Zbl

[12] S. Attal, A. Joye, C.-A. Pillet (eds.), Open Quantum Systems II. The Markovian Approach (Grenoble, France June 16 – July 4, 2003), Lecture Notes in Mathematics, 1881, Springer, Berlin, 2006 | MR | Zbl

[13] S. Attal, C. Pellegrini, Open Syst. Inf. Dyn., 17:4 (2010), 389–408 | DOI | MR | Zbl