A~model of nonautonomous dynamics driven by repeated harmonic interaction
Teoretičeskaâ i matematičeskaâ fizika, Tome 187 (2016) no. 3, pp. 531-559

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an exactly solvable model of nonautonomous $W^*$-dynamics driven by repeated harmonic interaction. The dynamics is Hamiltonian and quasifree. Because of inelastic interaction in the large-time limit, it leads to relaxation of initial states to steady states. We derive the explicit entropy production rate accompanying this relaxation. We also study the evolution of different subsystems to elucidate their eventual correlations and convergence to equilibriums. In conclusion, we prove that the $W^*$-dynamics manifests a universal stationary behavior in a short-time interaction limit.
Keywords: $W^*$-dynamics, repeated perturbation.
@article{TMF_2016_187_3_a8,
     author = {V. A. Zagrebnov and H. Tamura},
     title = {A~model of nonautonomous dynamics driven by repeated harmonic interaction},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {531--559},
     publisher = {mathdoc},
     volume = {187},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_187_3_a8/}
}
TY  - JOUR
AU  - V. A. Zagrebnov
AU  - H. Tamura
TI  - A~model of nonautonomous dynamics driven by repeated harmonic interaction
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 531
EP  - 559
VL  - 187
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_187_3_a8/
LA  - ru
ID  - TMF_2016_187_3_a8
ER  - 
%0 Journal Article
%A V. A. Zagrebnov
%A H. Tamura
%T A~model of nonautonomous dynamics driven by repeated harmonic interaction
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 531-559
%V 187
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2016_187_3_a8/
%G ru
%F TMF_2016_187_3_a8
V. A. Zagrebnov; H. Tamura. A~model of nonautonomous dynamics driven by repeated harmonic interaction. Teoretičeskaâ i matematičeskaâ fizika, Tome 187 (2016) no. 3, pp. 531-559. http://geodesic.mathdoc.fr/item/TMF_2016_187_3_a8/