Equation for one-loop divergences in two dimensions and its
Teoretičeskaâ i matematičeskaâ fizika, Tome 187 (2016) no. 3, pp. 505-518

Voir la notice de l'article provenant de la source Math-Net.Ru

We derive a simple formula for one-loop logarithmic divergences on the background of a two-dimensional curved space–time for theories in which the second variation of the action is a nonminimal second-order operator with small nonminimal terms. In particular, this formula allows calculating terms that are integrals of total derivatives. As an application of the result, we obtain one-loop divergences for higher-spin fields on a constant-curvature background in a nonminimal gauge that depends on two parameters. By an explicit calculation, we demonstrate that with the considered accuracy, the result is gauge independent and, moreover, spin independent for spins $s\ge3$.
Mots-clés : one-loop divergence
Keywords: higher-spin field.
@article{TMF_2016_187_3_a6,
     author = {E. P. Popova and K. V. Stepanyantz},
     title = {Equation for one-loop divergences in two dimensions and its},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {505--518},
     publisher = {mathdoc},
     volume = {187},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2016_187_3_a6/}
}
TY  - JOUR
AU  - E. P. Popova
AU  - K. V. Stepanyantz
TI  - Equation for one-loop divergences in two dimensions and its
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2016
SP  - 505
EP  - 518
VL  - 187
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2016_187_3_a6/
LA  - ru
ID  - TMF_2016_187_3_a6
ER  - 
%0 Journal Article
%A E. P. Popova
%A K. V. Stepanyantz
%T Equation for one-loop divergences in two dimensions and its
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2016
%P 505-518
%V 187
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2016_187_3_a6/
%G ru
%F TMF_2016_187_3_a6
E. P. Popova; K. V. Stepanyantz. Equation for one-loop divergences in two dimensions and its. Teoretičeskaâ i matematičeskaâ fizika, Tome 187 (2016) no. 3, pp. 505-518. http://geodesic.mathdoc.fr/item/TMF_2016_187_3_a6/