Equation for one-loop divergences in two dimensions and its
Teoretičeskaâ i matematičeskaâ fizika, Tome 187 (2016) no. 3, pp. 505-518
Voir la notice de l'article provenant de la source Math-Net.Ru
We derive a simple formula for one-loop logarithmic divergences on the background of a two-dimensional curved space–time for theories in which the second variation of the action is a nonminimal second-order operator with small nonminimal terms. In particular, this formula allows calculating terms that are integrals of total derivatives. As an application of the result, we obtain one-loop divergences for higher-spin fields on a constant-curvature background in a nonminimal gauge that depends on two parameters. By an explicit calculation, we demonstrate that with the considered accuracy, the result is gauge independent and, moreover, spin independent for spins $s\ge3$.
Mots-clés :
one-loop divergence
Keywords: higher-spin field.
Keywords: higher-spin field.
@article{TMF_2016_187_3_a6,
author = {E. P. Popova and K. V. Stepanyantz},
title = {Equation for one-loop divergences in two dimensions and its},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {505--518},
publisher = {mathdoc},
volume = {187},
number = {3},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2016_187_3_a6/}
}
TY - JOUR AU - E. P. Popova AU - K. V. Stepanyantz TI - Equation for one-loop divergences in two dimensions and its JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2016 SP - 505 EP - 518 VL - 187 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2016_187_3_a6/ LA - ru ID - TMF_2016_187_3_a6 ER -
E. P. Popova; K. V. Stepanyantz. Equation for one-loop divergences in two dimensions and its. Teoretičeskaâ i matematičeskaâ fizika, Tome 187 (2016) no. 3, pp. 505-518. http://geodesic.mathdoc.fr/item/TMF_2016_187_3_a6/